Seismic Forward Modeling of Semberah Fluviodeltaic Reservoir

2021 ◽  
Author(s):  
A. Widyantoro

Semberah field’s infill drilling activity to increase its recovery has been generally challenging because of limited seismic information to support the reservoir distribution characterization. Stratigraphic model building has been using mainly geological concept and well log analysis while undermines seismic information because of poor quality 2D lines. The best seismic quantitative interpretation uses in Semberah encompass amplitude mapping of extracted post-stack attributes. Semberah asset team recently suggests a new stratigraphic framework consists of isolated distributary sands and active delta switching sequences. The new framework allows seismic forward modeling method to constrain the sand boundaries. The seismic modeling workflow involves building rock physics models, performing synthetic modeling of varying channel facies over its elastic properties. The synthetic PP-reflectivity generation uses Semberah well’s wavelet extraction from Roy-White algorithm extraction which are later varied with several scenarios of fluid, porosity and random noise. The latest volumetric estimation from the integrated modeling produces significant oil and gas resources to justify Semberah further development. Both static model and seismic forward modeling suggest potentially finding wet sands during the SB-27 well drilling activities in July 2019. The well’s location uncertainty has been optimized by moving the well location to a structurally updip position from the existing well UKM-03 to avoid potential water level. A recommendation has also been put forward for the remaining five-well drilling proposals to sharpen the targeted stacked channels around the recommended areas. The seismic forward modeling technique has never been applied as part of the seismic quantitative interpretation method in Semberah, yet such process could be carried out with only 2D seismic lines. The result from seismic forward modeling provides better integration with the geological model and becomes a cost-effective option to optimize area with limited dataset such as Semberah. The updated geocellular model and the seismic forward modeling results have already been used to identify a number of prospect area and would invigorate the future Semberah well drilling proposals.

2017 ◽  
Vol 5 (2) ◽  
pp. T185-T197 ◽  
Author(s):  
Satinder Chopra ◽  
Ritesh Kumar Sharma ◽  
Amit Kumar Ray ◽  
Hossein Nemati ◽  
Ray Morin ◽  
...  

The Devonian Duvernay Formation in northwest central Alberta, Canada, has become a hot play in the past few years due to its richness in liquid and gaseous hydrocarbon resources. The oil and gas generation in this shale formation made it the source rock for many oil and gas fields in its vicinity. We attempt to showcase the characterization of Duvernay Formation using 3D multicomponent seismic data and integrating it with the available well log and other relevant data. This has been done by deriving rock-physics parameters (Young’s modulus and Poisson’s ratio) through deterministic simultaneous and joint impedance inversion, with appropriate quantitative interpretation. In particular, we determine the brittleness of the Duvernay interval, which helps us determine the sweet spots therein. The scope of this characterization exercise was extended to explore the induced seismicity observed in the area (i.e., earthquakes of magnitude [Formula: see text]) that is perceived to be associated with hydraulic fracture stimulation of the Duvernay. This has been a cause of media coverage lately. We attempt to integrate our results with the induced seismicity data available in the public domain and elaborate on our learning experience gained so far.


Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


2017 ◽  
pp. 62-67
Author(s):  
V. G. Kuznetsov ◽  
O. A. Makarov

At cementing of casing of oil and gas wells during the process of injecting of cement slurry in the casing column the slurry can move with a higher speed than it’s linear injection speed. A break of continuity of fluid flow occurs, what can lead to poor quality isolation of producing formations and shorten the effective life of the well. We need to find some technical solution to stabilize the linear velocity of the cement slurry in the column. This task can be resolved with an automated control system.


2021 ◽  
Vol 1064 (1) ◽  
pp. 012059
Author(s):  
R R Gazizov ◽  
A P Chizhov ◽  
V E Andreev ◽  
A V Chibisov ◽  
V V Mukhametshin ◽  
...  

2011 ◽  
Vol 64 (5) ◽  
pp. 1081-1088 ◽  
Author(s):  
Manfred Kleidorfer ◽  
Wolfgang Rauch

The Austrian standard for designing combined sewer overflow (CSO) detention basins introduces the efficiency of the combined sewer overflows as an indicator for CSO pollution. Additionally criteria for the ambient water quality are defined, which comprehend six kinds of impacts. In this paper, the Austrian legal requirements are described and discussed by means of hydrological modelling. This is exemplified with the case study Innsbruck (Austria) including a description for model building and model calibration. Furthermore an example is shown in order to demonstrate how – in this case – the overall system performance could be improved by implementing a cost-effective rearrangement of the storage tanks already available at the inflow of the wastewater treatment plant. However, this guideline also allows more innovative methods for reducing CSO emissions as measures for better usage of storage volume or de-centralised treatment of stormwater runoff because it is based on a sewer system simulation.


2017 ◽  
Vol 867 ◽  
pp. 290-293 ◽  
Author(s):  
Kandasamy Jayakrishna ◽  
P. Sanjay Guar ◽  
R. Senthilkumar ◽  
Nagarajan Aathis

Development of prototypes draws major focus in contemporary manufacturing organisations. Sustainability analysis and comparison of the prototype manufacturing process plays a vital role in deciding the sustainability level of the product. Sustainability of prototyping depends on model building material and model building process. In this paper based on the customer requirements, Environmental Conscious Quality Function Deployment (ECQFD) was carried out. Increased lives, strength, reduced toxicity of material with biodegradability were the major outputs of ECQFD. Cambridge Engineering Selector (CES) and Grey Relation Analysis (GRA) were used for material selection. Wood, ABS, Poly Lactic acid (PLA) and Lead were selected as cost efficient materials for the case product. A CAD model of the case product was developed and subjected to Life Cycle Analysis (LCA) using solid works sustainability express for the above materials. Prototypes of the case products where produced by wood carving, casting, CNC Milling and 3D printing by considering all input parameters required across each process. LCA was conducted using GaBi for the above process and the results were compared. From this study, it was observed that the case product developed using PLA with 3D printing technology had very less impact on environment and is considered as the best and cost effective prototyping method.


Author(s):  
Chittaranjan Sahay ◽  
Suhash Ghosh ◽  
Pradeep Kumar Bheemarthi

This work describes a strategy to reduce the cost associated with poor quality, by reducing the parts per million defects by Defining, Measuring, Analyzing, Implementing and Controlling (DMAIC) the production process. The method uses a combination of principles of Six Sigma applications, Lean Manufacturing and Shanin Strategy. The process has been used in analyzing the manufacturing lines of a brake lever at a Connecticut automotive components manufacturing company for reducing the cost associated with the production of nonconforming parts. The analysis was carried out with the help of the data collected on nonconformance parts and the application of phase change rules from DMAIC (+). Data analysis was carried out on statistical process control softwares, MINITAB and SPC XL 2000. Although, the problem of tight bushing existed on only one line of the brake lever assembly, this problem solving approach has solved the tight bushing problems on all assembly and alternates lines in a time- and cost-effective way.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


Author(s):  
R. Song ◽  
Z. Kang ◽  
Yuanlong Qin ◽  
Chunrun Li

Pipeline bundle system consisting of carrier pipe, sleeve pipe and internal flowlines offers innovative solution for the infield transportation of oil and gas. Due to its features, pipeline bundle offers a couple of advantages over conventional pipeline in particular for cases where multi-flowlines and high thermal performance are of great interests. The main benefits and advantages of such system include excellent thermal performance to prevent wax formation and hydrates, multiple bundled flowlines, mechanical and corrosion protection, potential reuse, etc. With the developments of offshore oil and gas industries, more and more hydrocarbon resources are being explored and discovered from shallow to deep water. Pipeline bundle system can be a smart solution for certain applications, which can be safe and cost effective solution. The objective of this paper is to overview pipeline bundle technology, outline detailed engineering design issue and procedure. Focus is given to its potential application in offshore for infield transportation. Engineering design principles and procedures for pipeline bundle system has been highlighted. A companion paper addressed the details of the construction and installation of pipeline bundle system. An example is given at the end of this paper to demonstrate the pipeline bundle system concept and its application.


2014 ◽  
Author(s):  
K.. Francis-LaCroix ◽  
D.. Seetaram

Abstract Trinidad and Tobago offshore platforms have been producing oil and natural gas for over a century. Current production of over 1500 Bcf of natural gas per year (Administration, 2013) is due to extensive reserves in oil and gas. More than eighteen of these wells are high-producing wells, producing in excess of 150 MMcf per day. Due to their large production rates, these wells utilize unconventionally large tubulars 5- and 7-in. Furthermore, as is inherent with producing gas, there are many challenges with the production. One major challenge occurs when wells become liquid loaded. As gas wells age, they produce more liquids, namely brine and condensate. Depending on flow conditions, the produced liquids can accumulate and induce a hydrostatic head pressure that is too high to be overcome by the flowing gas rates. Applying surfactants that generate foam can facilitate the unloading of these wells and restore gas production. Although the foaming process is very cost effective, its application to high-producing gas wells in Trinidad has always been problematic for the following reasons: Some of these producers are horizontal wells, or wells with large deviation angles.They were completed without pre-installed capillary strings.They are completed with large tubing diameters (5.75 in., 7 in.). Recognizing that the above three factors posed challenges to successful foam applications, major emphasis and research was directed toward this endeavor to realize the buried revenue, i.e., the recovery of the well's potential to produce natural gas. This research can also lead to the application of learnings from the first success to develop treatment for additional wells, which translates to a revenue boost to the client and the Trinidad economy. Successful treatments can also be used as correlations to establish an industry best practice for the treatment of similarly completed wells. This paper will highlight the successes realized from the treatment of three wells. It will also highlight the anomalies encountered during the treatment process, as well as the lessons learned from this treatment.


Sign in / Sign up

Export Citation Format

Share Document