scholarly journals STUDY AND PERFORMANCE OF SINGLE-PHASE RECTIFIERS WITH VARIOUS TYPE OF PARAMETER

Author(s):  
S.K. Mahobia ◽  
G.R. Kumrey

This paper represents the study of different types of single phase AC to DC step down converter. Performances and outputs have analyzed depending on the equations. Different parameters such as voltage gain, harmonic contents in input current, and parameters of changing output voltage are compared different type of single phase AC to DC converters. AC to DC converter is defined as rectifier. The main power supply system is alternating in nature. Rectification action is required to obtain DC supply from the main power supply which issinusoidal.

2021 ◽  
Vol 2121 (1) ◽  
pp. 012016
Author(s):  
Qiangjun Liu ◽  
Yun Liang ◽  
Junlin Zhang ◽  
Liangbo Qi

Abstract An application scheme of Poe based Ethernet technology in meteorological intelligent sensor system is designed. The working principle and implementation method of Ethernet power supply system (POE) based on IEEE802.3af Ethernet power supply industry standard are experimentally analyzed. The power supply part of the meteorological intelligent sensor makes full use of Poe technology to provide current on the network cable transmitting data, which greatly reduces the complexity of the power supply system and improves the reliability of the system power supply design. Through the test of the actual system, the function and performance of the meteorological intelligent transmission system have achieved the expected results.


2013 ◽  
Vol 655-657 ◽  
pp. 1609-1613
Author(s):  
Yu Hao Zhang

The dual-loop control method, in which inner-loop is the current and outer-loop is the voltage, is proposed to design a high-efficient precise numerical control parallel power supply system, it operates at input voltage of 24V, output voltage of 6-12V and output current of 0-4A. The current ratio of the parallel circuits can be set arbitrarily. Precise adjustment of output current and improvement of efficiency are realized by width modulation and synchronous buck-topology switching power supply, the output current error is smaller than 20mA and DC-DC conversion efficiency is up to 90%; to make output voltage error smaller than 30 mV and the current-sharing error smaller than 0.5%, digital calibration technology and PID control algorithm are used. In addition, this system is equipped with the function of overload protection, double-source redundant heat standby and turn-off, etc.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Fei Chang ◽  
Zhongping Yang ◽  
Fei Lin

Significant disadvantages in power quality especially the unbalance problem and neutral sections restrict the evolution of conventional traction power supply system. A new traction power supply system based on three-phase to single-phase converter is studied, which can transfer active power from three-phase grid to single-phase catenary. One catenary section could be utilized in the new traction power supply system instead of the multiple split sections in conventional system. Three-phase to single-phase converter is the core equipment of new traction power system. MMC (modular multilevel converter) structure of AC-DC-AC substation is proposed in this paper. To solve the problem of the capacitor voltage balancing in MMC, a parallel sorting algorithm based on field programmable gate array (FPGA) is studied. And the correctness and effectiveness of the algorithm are verified by experiments. In addition, it is inevitable that the AC grid voltage will be unbalanced caused by the fault in the new system. Therefore, this paper focuses on the analysis of the effect of the unbalanced grid voltage on the operating characteristics of the MMC system. Finally, the correctness of the theoretical analysis is verified by simulation.


2019 ◽  
Vol 2 (3) ◽  
pp. 152-165
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: the article reviews the main types of wind turbines and electric power generators designated for wind-driven power plants, as well as new technological solutions. The co-authors have identified the main strengths and weaknesses of wind-driven power plants used as a source of alternative energy. The co-authors have developed an algorithm for selection of a standalone power supply system using a wind-driven power plant.Subject of research: using a comprehensive approach to efficiently design and develop wind-driven power plants with account for climatic and geographic conditions, specifications of wind-driven power plants to be installed.Objective: identification of requirements and specifications needed to develop an algorithm for selection of a standalone power supply system using a wind power plant.Methods: the co-authors have analyzed different types of wind turbines and power generators which are currently in use.Results and discussion: the co-authors present the algorithm for selection of a standalone power supply system using a wind-driven power plant.Conclusion: the algorithm, which is being developed by the co-authors, helps to design an efficient standalone power supply system having a wind-driven power plant.


2014 ◽  
Vol 609-610 ◽  
pp. 1408-1411
Author(s):  
Zhong Xian Wang ◽  
Yong Geng Wei ◽  
Yong Li Bi

In the paper, the PV power supply control system is proposed to realize the uninterrupted power supply, including DC and AC supply. By the method of combining software with hardware, through the solar panel to the configured two pieces of battery could realize the function of fast and slow charging, and the supply battery is changed by testing the battery power to the load uninterrupted power supply. Moreover, when the output voltage of the solar panel is lower than the battery, the output voltage of solar panel is boosted by DC/DC circuit to make the solar panel at low pressures also to charge the battery, effectively solving the difficult solar energy in the weak power supply problem.


2014 ◽  
Vol 29 (10) ◽  
pp. 5323-5333 ◽  
Author(s):  
Xiaoqiong He ◽  
Zeliang Shu ◽  
Xu Peng ◽  
Qi Zhou ◽  
Yingying Zhou ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1214
Author(s):  
Shaofeng Xie ◽  
Yiming Zhang ◽  
Hui Wang

Power quality and neutral section are two technical problems that hinder the development of electrified railway to high-speed and heavy railway. The co-phase power supply technology is one of the best ways to solve these two technical problems. At present, a V type connection traction transformer is widely used in a power frequency single-phase AC traction power supply system, especially in high-speed railway. In this paper, a new type of co-phase power supply system for electrified railway based on V type connection traction transformer is proposed. One single-phase winding in the V type connection traction transformer is used as main power supply channel, and three ports are used as compensation ports. Neutral section is no longer set with traction substation, and the train is continuously powered through. The independent single-phase Static Var Generators (SVGs) are used to compensate the three-phase imbalance caused by single-phase traction load. When necessary, the power factor can be improved at the same time. The principle, structure, control strategy, and capacity configuration of the technical scheme are analyzed in this paper, and the effectiveness of the scheme is verified by using the measured data of electrified railway. The advantage of this scheme lies in the universal applicability of the V type connection traction transformer, and the flexibility of the SVG device.


Sign in / Sign up

Export Citation Format

Share Document