scholarly journals Method of parametric analysis of reciprocating electric generators with permanent magnets

Author(s):  
A. B. Menzhinski ◽  
A. N. Malashin ◽  
A. E. Kaleda

A method for the parametric analysis of electric generators of reciprocating motion with permanent magnets has been developed, which allows revealing the values of the parameters of the magnetic circuit (cross-sectional area) and the working winding (number of turns) at a given value of the efficiency, providing a minimum specific gravity of the generator. The method of parametric analysis of electric generators of reciprocating motion with permanent magnets consists of three stages. The first and second stages are the electromagnetic calculation of the generator: at the first stage, the main geometric dimensions of the magnetic system and the parameters of the working winding of the generator are determined; at the second stage, the verification of the electromagnetic calculation of the generator, calculation of the nominal mode, calculation of the efficiency and assessment of the thermal state of the generator are fulfilled. At the third stage, a parametric analysis of electric generators of reciprocating motion with permanent magnets with specified constraints is carried out, as well as the refinement of the geometric dimensions and configuration of the magnetic system of the generator using a two-dimensional finite element model of the magnetic field. As a result, to ensure better use of the electrical steel of the magnetic circuit of the generator and thereby reduce its mass, the most saturated areas and areas, which are characterized by low values of the magnetic field strength, are determined. Distinctive features of the proposed technique are: the use of a minimum specific gravity of electric generators of reciprocating motion with longitudinal, transverse or combined changes in the magnetic flux passing through the working winding as an objective function; combined approach to electromagnetic calculation; taking into account the influence of the operating temperature on the parameters of the permanent magnet, as well as overheating of individual parts of the generator.

Author(s):  
A. B. Menzhinski ◽  
A. N. Malashin ◽  
P. B. Menzhinski

The analysis of scientific papers devoted to the mathematical description of electric generators of reciprocating motion with permanent magnets demonstrated that the proposed mathematical models of this type of generators are based on the theory of magnetic circuits. Such mathematical models are based on a simplified representation of the magnetic system and the magnetic field in the form of a magnetic circuit with corresponding magnetic conductivities. However, unlike traditional rotary type electric machines, electric generators of reciprocating motion have a number of features, the omission of which in mathematical modeling causes the increase of  the cost of their creation (due to the duration of the design and experimental refinement of the generators). Therefore, at the initial stages of electromagnetic calculation and solving optimization problems, it is necessary to use adequate mathematical models to improve the accuracy of calculations of the parameters of these generators. For this purpose, a mathematical model based on field theory can be used; however, its main drawback is the complexity of its application for solving optimization problems. In this regard, to improve the accuracy of calculations of the parameters of electric generators of reciprocating motion with permanent magnets, it is proposed to use refining coefficients (coefficients of scattering and buckling of the magnetic flux) in mathematical models based on the theory of magnetic circuits. The authors have developed refined electromagnetic models of electric generators of reciprocating motion with permanent magnets, which make it possible to obtain the main parameters of generators at the initial stages of electromagnetic calculation and when solving optimization problems with acceptable accuracy. A distinctive feature of the refined electromagnetic models of generators is the consideration of the scattering and buckling coefficients of the magnetic flux in the magnetic system that change during the simulation.  


Author(s):  
Alexandr Kriachok ◽  
Mykola Reutskyi ◽  
Dmytro Sushko

The creation of modern computer-aided design systems for devices and electrical machines of new generation, built on the basis of permanent magnets, necessitates the development of new mathematical models and effective computational algorithms. Based on mathematical models and using IT technologies, it is possible to develop both separate functional CAD blocks and an integrated system for calculating device parameters and modeling its characteristics. The paper considers a typical design of an electromechanical device with permanent magnets, which create a field with specified characteristics in the working area. At the first stage of the study, the heterogeneity of the environment was not taken into account. To calculate the strength of the magnetic field created by rectangular magnets, two mathematical models were obtained. This approach made it possible, first, to check the results of calculations and, secondly, to use mathematical models for comparative analysis when performing numerical modeling of the magnetic field characteristics for a system built, for example, using cylindrical magnets. On the foundation of developed mathematical model, an algorithm for analyzing the initial characteristics of a special device with permanent magnets is proposed. Devices of this type can be used to register small displacements. At the same time, the very scheme of the magnetic system and mathematical models describing the properties of the magnetic field can be used in the development of other types of electrical devices built using permanent magnets. A number of experiments on numerical simulation of the magnetic field pattern in the working area of the device were performed in the work. The results of the sensor signal simulation during the movement of the test body are also presented.


2021 ◽  
Vol 7 (2) ◽  
pp. 119-129
Author(s):  
Yuri F. Antonov

Background: The methods of calculation and elements of the technology for creating heteropolar magnetic systems of levitation, lateral stabilization and a rotor-runner of a traction linear synchronous motor for the development of the transport technology "Russian Maglev" in order to achieve an increased levitation gap of 0.2 m, reduce the threshold speed of the exit vehicle in levitation mode up to 10 km/h. Aim: to develop methods for calculating and designing heteropolar poles from elementary permanent magnets, coils of the same type based on composite low-temperature superconductors and high-temperature tape superconductors of the second generation and a step-by-step technology for their production. Tasks: Creation of an on-board magnetic system of levitation and lateral stabilization, allowing to provide a levitation gap of 0.2 m, a threshold value of vehicle speed of 10 km/h when transition to levitation mode, to reduce stray magnetic fields to the level of the natural field of terrestrial magnetism of 50 T; Creation of a rotor-runner of a linear synchronous motor with an ironless stator with a power of 10 MW. Methods: outlines the main calculation methodologies: "analysis" and "synthesis". The "analysis" methodology is adopted in solving the "direct" calculation problem, when the configuration of the magnetic system is set and the magnetic field in the working area is calculated, and, if necessary, the stray magnetic fields. This methodology can be effectively applied if there is experience in creating magnetic systems. Otherwise, the "synthesis" methodology is applied, which is used in solving the "inverse" calculation problem, in which the picture of the distribution of the magnetic field in the working zone is set and the configuration of the magnetic system is found (synthesized). Results of the study performed: The parameters and characteristics of high-energy permanent magnets made of rare-earth metals, low-temperature and high-temperature superconducting winding materials have been analyzed, the choice of permanent magnets and superconducting winding material has been made; Calculations of the magnetic system of permanent magnets in the "Halbach assembly" and in the traditional assembly in a toothed ferromagnetic core have been carried out; Calculations of a track coil with a rectangular cross-section of the winding are performed; Methods for calculating and optimizing superconducting magnetic systems from a set of similar track modules have been developed; Conclusions: The results of the performed fundamental research will allow starting the calculation, design and construction of conveyor-main passenger and freight lines of maglev transport, as well as urban public transport.


2012 ◽  
Vol 23 (9) ◽  
pp. 979-987 ◽  
Author(s):  
Holger Böse ◽  
Johannes Ehrlich

Novel concepts for the magnetic circuit in magnetorheological dampers have been proven. In contrast to the established magnetic circuits where the magnetic field for the control of the magnetorheological fluid is generated by the coil of an electromagnet, hybrid magnetic circuits consisting of at least one permanent or hard magnet and an electromagnet are used in the new approaches. Three different technical configurations are distinguished: (1) The electromagnet is combined with two permanent magnets, whose magnetization cannot be modified even by strong magnetic fields of the electromagnet. The main advantage is the improved fail-safe behavior of the damper in case of a power failure. (2) The electromagnet is combined with a hard magnet, whose magnetization can be modified by the electromagnet. This configuration leads to high energy efficiency, because electric power is only required in short pulses for the switching of the hard magnet. (3) All three types of magnetic field sources, permanent, hard, and electromagnet, are combined in the magnetic circuit, which gives the highest flexibility of the magnetic field generation and the damping control at the expense of a relatively large effort. Demonstrators for magnetorheological dampers with all three magnetic circuits were constructed and their performances were tested. The results of the investigations are described in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kyungshik Lee ◽  
Chongdu Cho

The feasibility of a noncontact sensor is investigated. This type of sensor can potentially be used for torque measurement in a speed-variable power transmission system. Torque can be read by examining the phase difference between two induction signals from respective magnetic sensors that detect the magnetic field intensity of permanent magnets mounted on the surface of a shaft in rotation. A real-time measuring algorithm that includes filtering and calibration is adopted to measure the torque magnitude. It is shown that this new torque sensor can perform well under rotation speeds ranging from 300 rpm to 500 rpm. As an interim report rather than a complete development, this work demonstrates the feasibility of noncontact torque measurement by monitoring a magnetic field. The result shows an error of less than 2% within the full test range, which is a sufficient competitive performance for commercial sensors. The price is very low compared to competitors in the marketplace, and the device does not require special handling of the shaft of the surface.


2013 ◽  
Vol 10 (1) ◽  
pp. 73-84
Author(s):  
Baghdad Science Journal

Permanent magnets of different intensities were used to investigate the effect of a magnetic field in the process of preventing deposits of calcium carbonate. The magnets were fixed on the water line from the tap outside. Then heating a sample of this water in flasks and measuring the amount of sediment in a manner weighted differences. These experiments comprise to the change of the velocity of water flow, which amounted to (0.5, 0.75, 1) m/sec through the magnetic fields that are of magnetic strength (2200, 6000, 9250, 11000) Gauss, and conduct measurements, tests and compare them with those obtained from the use of ordinary water.The results showed the effectiveness of magnetic treatment in reducing the rate of deposition of calcium carbonate where up to 60% after treatment, and this percentage is increasing with increasing magnetic field strength where up to 85% when the intensity of the magnetic field 9250 and 11000 Gauss at the velocity of the water flow of 0.75 m/sec. This percentage of reducing was investigated with increasing the velocity of flow of water through a magnetic field. Also the results showed an increase in total dissolved solids (TDS) as well as electrical conductivity and a decrease in the value of surface tension as a result of magnetic treatment.Observation with the photograph pictures of the distillation apparatus oriented in several laboratories, that the amount of sediment formed a thick layer in the device-free magnetic treatment, but it was not dense and in the few quantity in the apparatus treated with magnetic intensity (8000, 9250) Gauss.


Sign in / Sign up

Export Citation Format

Share Document