scholarly journals On periodic points of 2-periodic dynamical systems

Author(s):  
João Ferreira Alves
1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


2016 ◽  
Vol 38 (4) ◽  
pp. 1479-1498
Author(s):  
JUNGSOO KANG

In reversible dynamical systems, it is of great importance to understand symmetric features. The aim of this paper is to explore symmetric periodic points of reversible maps on planar domains invariant under a reflection. We extend Franks’ theorem on a dichotomy of the number of periodic points of area-preserving maps on the annulus to symmetric periodic points of area-preserving reversible maps. Interestingly, even a non-symmetric periodic point guarantees infinitely many symmetric periodic points. We prove an analogous statement for symmetric odd-periodic points of area-preserving reversible maps isotopic to the identity, which can be applied to dynamical systems with double symmetries. Our approach is simple, elementary, and far from Franks’ proof. We also show that a reversible map has a symmetric fixed point if and only if it is a twist map which generalizes a boundary twist condition on the closed annulus in the sense of Poincaré–Birkhoff. Applications to symmetric periodic orbits in reversible dynamical systems with two degrees of freedom are briefly discussed.


2013 ◽  
Vol 50 (4) ◽  
pp. 509-522 ◽  
Author(s):  
Fatemah Shirazi ◽  
Javad Sarkooh ◽  
Bahman Taherkhani

In the following text we prove that in a generalized shift dynamical system (XГ, σφ) for infinite countable Г and discrete X with at least two elements the following statements are equivalent: the dynamical system (XГ, σφ) is chaotic in the sense of Devaneythe dynamical system (XГ, σφ) is topologically transitivethe map φ: Г → Г is one to one without any periodic point.Also for infinite countable Г and finite discrete X with at least two elements (XГ, σφ) is exact Devaney chaotic, if and only if φ: Г → Г is one to one and φ: Г → Г has niether periodic points nor φ-backwarding infinite sequences.


1983 ◽  
Vol 3 (4) ◽  
pp. 627-647
Author(s):  
Joseph Rosenblatt ◽  
Richard Swanson

AbstractFor many diffeomorphisms of a compact manifold X, eventual conditional hyperbolicity implies immediate conditional hyperbolicity in some (possibly new) Finsler structures. That is, if A and B are vector bundle isomorphisms over the mapping ƒ of the base X, such that uniformly on X, then there exist new norms for A and B such that uniformly on X, whenever the mapping ƒ satisfies the condition that there exist infinitely many N ≥ 1 such that any ƒ-invariant. For example, this condition on ƒ holds if any one of the following conditions holds: (1) ƒ is periodic; (2) ƒ is periodic on its non-wandering set; (3) ƒ has a finite non-wandering set (for example, ƒ is a Morse-Smale diffeomorphism); (4) ƒ is an almost periodic mapping of a connected base X; (5) ƒ is a mapping of the circle with no periodic points; or (6) ƒ and all its powers are uniquely ergodic. We consider various types of eventually conditionally hyperbolic systems and describe sufficient conditions on ƒ to have immediate conditional hyperbolicity of these systems in some new Finsler structures. Thus, for a sizable class of dynamical systems, we settle, in the affirmative, a question raised by Hirsch, Pugh, and Shub.


1995 ◽  
Vol 15 (5) ◽  
pp. 939-950 ◽  
Author(s):  
John Kulesza

AbstractIf (X, f) is a compact metric, finite-dimensional dynamical system with a zero-dimensional set of periodic points, then there is a zero-dimensional compact metric dynamical system (C, g) and a finite-to-one (in fact, at most (n + l)n-to-one) surjection h: C → X such that h o g = f o h. An example shows that the requirement on the set of periodic points is necessary.


2021 ◽  
Vol 31 (01) ◽  
pp. 2150017
Author(s):  
Mohammad Salman ◽  
Xinxing Wu ◽  
Ruchi Das

We introduce the concepts of sensitivity, multisensitivity, cofinite sensitivity, and syndetic sensitivity for nonautonomous dynamical systems on uniform spaces and obtain some sufficient conditions under which topological transitivity and dense periodic points imply sensitivity for nonautonomous systems on Hausdorff uniform spaces. We also study sensitivity and other stronger versions of sensitivity for the systems induced on hyperspaces and for the product of nonautonomous dynamical systems on uniform spaces.


1987 ◽  
Vol 28 (4) ◽  
pp. 921-928 ◽  
Author(s):  
Kiyotaka Tanikawa ◽  
Yoshihiro Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document