scholarly journals Design and Implementation of Learning Process Tracking System based on SCORM

Author(s):  
Xing-hua Sun ◽  
Ze-xin An ◽  
Jun-hua Liang
Author(s):  
Samuel Davies ◽  
Sivagunalan Sivanathan ◽  
Ewen Constant ◽  
Kary Thanapalan

AbstractThis paper describes the design of an advanced solar tracking system development that can be deployed for a range of applications. The work focused on the design and implementation of an advanced solar tracking system that follow the trajectory of the sun’s path to maximise the power capacity generated by the solar panel. The design concept focussed on reliability, cost effectiveness, and scalability. System performance is of course a key issue and is at the heart of influencing the hardware, software and mechanical design. The result ensured a better system performance achieved. Stability issues were also addressed, in relation to optimisation and reliability. The paper details the physical tracker device developed as a prototype, as well as the proposed advanced control system for optimising the tracking.


2018 ◽  
Vol 57 ◽  
pp. 02003 ◽  
Author(s):  
Wilson E. Sánchez ◽  
Mario P. Jiménez ◽  
Carlos A. Mantilla ◽  
José M. Toro ◽  
Miguel A. Villa ◽  
...  

This investigation describes the design and implementation of a parabolic trough solar collector (PCC) with solar tracking to obtain hot water. The solar radiation available at the installation site is analyzed, followed by the design and construction of the mechanical system, making a series of calculations for the dimensioning of the reflective base, and a stress and deflection analysis of the structure is performed to verify the feasibility of the design in the ANSYS software. An analysis of the solar tracking system is performed, which is dimensioned from the PCC structure to determine the type of solar tracker to implement; The charging system, consisting of a solar panel and a battery, is dimensioned for the power supply of the tracking system; as a last point, for the heating system is determined the amount of water that is able to heat the system from the energy analysis at the installation site, the heating system is based on placing a Heat Pipe, in the focus of the parabola to receive the solar rays reflected by the collector and heat exchange to the water from a thermowell where the heat pipe condenser enters, finally tests are carried out in the PCC implemented obtaining a global efficiency of 16.37%.


Sign in / Sign up

Export Citation Format

Share Document