scholarly journals On Moments Properties of Generalized Order Statistics from Marshall-Olkin-Extended General Class of Distribution

Author(s):  
M. A. Khan ◽  
Nayabuddin
2015 ◽  
Vol 11 (1) ◽  
pp. 73-89
Author(s):  
Devendra Kumar

Abstract In this paper we consider general class of distribution. Recurrence relations satisfied by the quotient moments and conditional quotient moments of lower generalized order statistics for a general class of distribution are derived. Further the results are deduced for quotient moments of order statistics and lower records and characterization of this distribution by considering the recurrence relation of conditional expectation for general class of distribution satisfied by the quotient moment of the lower generalized order statistics.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 335
Author(s):  
Mohamed A. Abd Elgawad ◽  
Haroon M. Barakat ◽  
Shengwu Xiong ◽  
Salem A. Alyami

In this paper, we study the concomitants of dual generalized order statistics (and consequently generalized order statistics) when the parameters γ1,⋯,γn are assumed to be pairwise different from Huang–Kotz Farlie–Gumble–Morgenstern bivariate distribution. Some useful recurrence relations between single and product moments of concomitants are obtained. Moreover, Shannon’s entropy and the Fisher information number measures are derived. Finally, these measures are extensively studied for some well-known distributions such as exponential, Pareto and power distributions. The main motivation of the study of the concomitants of generalized order statistics (as an important practical kind to order the bivariate data) under this general framework is to enable researchers in different fields of statistics to use some of the important models contained in these generalized order statistics only under this general framework. These extended models are frequently used in the reliability theory, such as the progressive type-II censored order statistics.


2021 ◽  
Vol 53 (1) ◽  
pp. 107-132
Author(s):  
Tomasz Rychlik ◽  
Fabio Spizzichino

AbstractWe study the distributions of component and system lifetimes under the time-homogeneous load-sharing model, where the multivariate conditional hazard rates of working components depend only on the set of failed components, and not on their failure moments or the time elapsed from the start of system operation. Then we analyze its time-heterogeneous extension, in which the distributions of consecutive failure times, single component lifetimes, and system lifetimes coincide with mixtures of distributions of generalized order statistics. Finally we focus on some specific forms of the time-nonhomogeneous load-sharing model.


Sign in / Sign up

Export Citation Format

Share Document