Smart Access Absensi Praktikum Teknik Elektro Universitas Trunojoyo Madura Menggunakan RFID Berbasis Internet of Things (IoT)

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Miftachul Ulum ◽  
Ahmad Fiqhi Ibadillah ◽  
Adi Kurniawan Saputro

Sistem absensi manual tidak praktis dalam proses perekapan absensike server pusat, karena harus diolah secara manual dan banyakkemungkinan human error. Data absensi tidak dapat langsung diuploadke server sehingga diperlukan sistem absensi yang terintegrasi agardapat meminimalisir kesalahan dan kecurangan. Pada penelitian ini,dirancang alat untuk sistem dengan rfid yang akan mengidentifikasi iddata sebagai input untuk database. Penulis menggunakan metode KNearestNeighbor sebagai klasifikasi, jam masuk dan jam keluardijadikan sebagai masukkan untuk data uji dan data latih yangdiperoleh dari pembacaan id oleh RFID RC522 yang disematkandalam modul absensi. Bertumpu pada NodeMCU untuk kebutuhanInternet of Things dan juga penggerak dari keseluruhan komponen didalamnya, alat tersebut dapat diwujudkan dalam bentuk yang simpeldan menarik. Dari hasil pengujian yang telah dilakukan pada penelitiansistem dan modul absensi mendapatkan skor rata-rata waktu di bawah10 second untuk 1 kali proses absensi, untuk klasifikasi menggunakanmetode K-Nearest Neighbor dengan euclidean distance menghasilkantingkat akurasi yang tinggi berturut-turut 66,67% - 100% sesuai dandapat dikatakan sistem dan modul absensi ini sudah berjalan denganbaik dan efektif.

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Hyung-Ju Cho

We investigate the k-nearest neighbor (kNN) join in road networks to determine the k-nearest neighbors (NNs) from a dataset S to every object in another dataset R. The kNN join is a primitive operation and is widely used in many data mining applications. However, it is an expensive operation because it combines the kNN query and the join operation, whereas most existing methods assume the use of the Euclidean distance metric. We alternatively consider the problem of processing kNN joins in road networks where the distance between two points is the length of the shortest path connecting them. We propose a shared execution-based approach called the group-nested loop (GNL) method that can efficiently evaluate kNN joins in road networks by exploiting grouping and shared execution. The GNL method can be easily implemented using existing kNN query algorithms. Extensive experiments using several real-life roadmaps confirm the superior performance and effectiveness of the proposed method in a wide range of problem settings.


2021 ◽  
Vol 8 (3) ◽  
pp. 215-226
Author(s):  
Parisa Saeipourdizaj ◽  
Parvin Sarbakhsh ◽  
Akbar Gholampour

Background: PIn air quality studies, it is very often to have missing data due to reasons such as machine failure or human error. The approach used in dealing with such missing data can affect the results of the analysis. The main aim of this study was to review the types of missing mechanism, imputation methods, application of some of them in imputation of missing of PM10 and O3 in Tabriz, and compare their efficiency. Methods: Methods of mean, EM algorithm, regression, classification and regression tree, predictive mean matching (PMM), interpolation, moving average, and K-nearest neighbor (KNN) were used. PMM was investigated by considering the spatial and temporal dependencies in the model. Missing data were randomly simulated with 10, 20, and 30% missing values. The efficiency of methods was compared using coefficient of determination (R2 ), mean absolute error (MAE) and root mean square error (RMSE). Results: Based on the results for all indicators, interpolation, moving average, and KNN had the best performance, respectively. PMM did not perform well with and without spatio-temporal information. Conclusion: Given that the nature of pollution data always depends on next and previous information, methods that their computational nature is based on before and after information indicated better performance than others, so in the case of pollutant data, it is recommended to use these methods.


Internet of Things (IoT) is a new Paradiagram in the network technology. It has the vast application in almost every field like retail, industries, and healthcare etc. It has challenges like security and privacy, robustness, weak links, less power, etc. A major challenge among these is security. Due to the weak connectivity links, these Internet of Things network leads to many attacks in the network layer. RPL is a routing protocol which establishes a path particularly for the constrained nodes in Internet of Things based networks. These RPL based network is exposed to many attacks like black hole attack, wormhole attack, sinkhole attack, rank attack, etc. This paper proposed a detection technique for rank attack based on the machine learning approach called MLTKNN, based on K-nearest neighbor algorithm. The proposed technique was simulated in the Cooja simulation with 30 motes and calculated the true positive rate and false positive rate of the proposed detection mechanism. Finally proved that, the performance of the proposed technique was efficient in terms of the delay, packet delivery rate and in detection of the rank attack.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhiyuan Wang ◽  
Shouwen Ji ◽  
Bowen Yu

Short-term traffic volume forecasting is one of the most essential elements in Intelligent Transportation System (ITS) by providing prediction of traffic condition for traffic management and control applications. Among previous substantial forecasting approaches, K nearest neighbor (KNN) is a nonparametric and data-driven method popular for conciseness, interpretability, and real-time performance. However, in previous related researches, the limitations of Euclidean distance and forecasting with asymmetric loss have rarely been focused on. This research aims to fill up these gaps. This paper reconstructs Euclidean distance to overcome its limitation and proposes a KNN forecasting algorithm with asymmetric loss. Correspondingly, an asymmetric loss index, Imbalanced Mean Squared Error (IMSE), has also been proposed to test the effectiveness of newly designed algorithm. Moreover, the effect of Loess technique and suitable parameter value of dynamic KNN method have also been tested. In contrast to the traditional KNN algorithm, the proposed algorithm reduces the IMSE index by more than 10%, which shows its effectiveness when the cost of forecasting residual direction is notably different. This research expands the applicability of KNN method in short-term traffic volume forecasting and provides an available approach to forecast with asymmetric loss.


2019 ◽  
Vol 15 (11) ◽  
pp. 155014771988989
Author(s):  
Jinlin Wang ◽  
Haining Yu ◽  
Xing Wang ◽  
Hongli Zhang ◽  
Binxing Fang ◽  
...  

The application of the Internet of Things has produced large amounts of data in different scenarios, which are accompanied with problems, such as consistency and integrity violations. Existing research on dealing with data availability violations is insufficient. In this work, the detection and repair of data availability violations (DRAV) framework is proposed to detect and repair data violations in Internet of Things with a distributed parallel computing environment. DRAV uses algorithms in the MapReduce programming framework, and these include detection and repair algorithms based on enhanced conditional function dependency for data consistency violation, MapJoin, and ReduceJoin algorithms based on master data for k-nearest neighbor–based integrity violation detection, and repair algorithms. Experiments are conducted to determine the effect of the algorithms. Results show that DRAV improves data availability in Internet of Things compared with existing methods by detecting and repairing violations.


Petir ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 80-85
Author(s):  
Yohannes Yohannes ◽  
Muhammad Ezar Al Rivan

Mammal type can be classified based on the face. Every mammal’s face has a different shape. Histogram of Oriented Gradient (HOG) used to get shape feature from mammal’s face. Before this step, Global Contrast Saliency used to make images focused on an object. This process conducts to get better shape features. Then, classification using k-Nearest Neighbor (k-NN). Euclidean and cityblock distance with k=3,5,7 and 9 used in this study. The result shows cityblock distance with k=9 better than Euclidean distance for each k. Tiger is superior to others for all distances. Sheep is bad classified.


2021 ◽  
Author(s):  
Tlamelo Emmanuel ◽  
Thabiso Maupong ◽  
Dimane Mpoeleng ◽  
Thabo Semong ◽  
Mphago Banyatsang ◽  
...  

Abstract Machine learning has been the corner stone in analysing and extracting information from data and often a problem of missing values is encountered. Missing values occur as a result of various factors like missing completely at random, missing at random or missing not at random. All these may be as a result of system malfunction during data collection or human error during data pre-processing. Nevertheless, it is important to deal with missing values before analysing data since ignoring or omitting missing values may result in biased or misinformed analysis. In literature there have been several proposals for handling missing values. In this paper we aggregate some of the literature on missing data particularly focusing on machine learning techniques. We also give insight on how the machine learning approaches work by highlighting the key features of the proposed techniques, how they perform, their limitations and the kind of data they are most suitable for. Finally, we experiment on the K nearest neighbor and random forest imputation techniques on novel power plant induced fan data and offer some possible future research direction.


2020 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Rozzi Kesuma Dinata ◽  
Fajriana Fajriana ◽  
Zulfa Zulfa ◽  
Novia Hasdyna

Pada penelitian ini diimplementasikan algoritma K-Nearest Neighbor dalam pengklasifikasian Sekolah Menengah Pertama/Sederajat berdasarkan peminatan calon siswa. Tujuan penelitian ini adalah untuk memudahkan pengguna dalam menemukan sekolah SMP/sederajat berdasarkan 8 kriteria sekolah yaitu akreditasi, fasilitas ruangan, fasilitas olah raga, laboratorium, ekstrakulikuler, biaya, tingkatan kelas dan waktu belajar. Adapun data yang digunakan dalam penelitian ini didapatkan dari Dinas Pendidikan Pemuda dan Olahraga Kabupaten Bireuen. Hasil penelitian dengan menggunakan K-NN dan pendekatan Euclidean Distance dengan k=3, diperoleh nilai precision sebesar 63,67%, recall 68,95% dan accuracy sebesar 79,33% .


Sign in / Sign up

Export Citation Format

Share Document