scholarly journals Formulation of Mouth Dissolving Tablets Using Solid Dispersion Technique: A Review

2018 ◽  
Vol 6 (03) ◽  
pp. 66-72
Author(s):  
Gurpreet Singh ◽  
Jayesh Dwivedi ◽  
Jeyabalan Govindasamy ◽  
Naresh Kalra ◽  
Rajesh Sharma

Mouth-dissolving tablets are also called as fast disintegrating tablets, melt-in mouth tablets, orodispersible tablets, quick dissolving etc. Mouth dissolving tablets are those when put on tongue disintegrate rapidly thereby releasing the drug, which dissolve or disperses in the saliva. The faster the drug dissolved into solution, quick will be the absorption and onset of clinical effect. Mouth dissolving tablet containing solid dispersion was developed to improve the solubility of drug and stability of solid dispersion. Such tablets are disintegrate and/or dissolve rapidly in the saliva without the need for water. Hence it is regarded as the safest, most convenient and most economical method of drug delivery having the highest patient compliance. The later portion of the article focus on the progress in methods of manufacturing, evaluation and various latest technologies involved in the development of Mouth dissolving tablets. Solid dispersion is basically a drug with polymer two-component system; hence the drug–polymer interaction should be determined first in order to ensure the stability of the formulation. This review is intended to discuss the recent advances related on the area of solid dispersion technology. Since different methods are used for the preparation of solid dispersions such as fusion method, solvent method, melting solvent method, melt extrusion method, lyophilisation technique, melt agglomeration process, use of surfactant, electro spinning and super Critical Fluid Technology, of them which method is good and suitable for which type of drug. The use of Mouth dissolving dosage forms has solved various problems noted in administration of drugs to the pediatric and elderly patient, which constitutes a large proportion of the world's population. The initial focus of this review article is based on solid dispersion mainly advantages, disadvantages, types, the method of preparation, and characterization of the solid dispersion at laboratory and industrial level.

Author(s):  
Pratik Swarup Das ◽  
Sushma Verma ◽  
Puja Saha

Fast dissolving tablets are also called as mouth-dissolving tablets, melt-in mouth tablets, orodispersible tablets, quick dissolving etc. Fast dissolving tablets are those when put on tongue disintegrate instantaneously releasing the drug, which dissolve or disperses in the saliva. The faster the drug dissolved into solution, quicker the absorption and onset of clinical effect. Oral routes of drug administration have wide acceptance up to 50-60% of total dosage forms. Fast dissolving tablet containing solid dispersion was developed to improve the dissolution of drug and stability of solid dispersion. They are disintegrating and/or dissolve rapidly in the saliva without the need for water. Thus it is regarded as the safest, most convenient and most economical method of drug delivery having the highest patient compliance. The later part of the article focus on the progress in methods of manufacturing, evaluation and various latest technologies involved in the development of Fast dissolving tablets. Solid dispersion is basically a drug–polymer two-component system; the drug–polymer interaction is the determining factor in its design and performance. It also discusses about modern characterization technique to characterize solid dispersion. In this review, it is intended to discuss the recent advances related on the area of solid dispersion technology. Different methods are also been used for preparation of solid dispersions such as Melting method, Solvent method, Melting solvent method, Melt extrusion method, lyophilisation Technique, Melt Agglomeration Process, The Use Of Surfactant, Electro spinning and Super Critical Fluid Technology. The introduction of fast dissolving dosage forms has solved some of the problems encountered in administration of drugs to the pediatric and elderly patient, which constitutes a large proportion of the world's population. Solid dispersions have attracted considerable interest as an efficient means of improving the dissolution rate and hence the bio availability of a range of poorly water-soluble drugs. The focus of one part of the review article is based on solid dispersion mainly advantages, disadvantages, types, the method of preparation, and characterization of the solid dispersion at laboratory and industrial level.


2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430


Author(s):  
Mohan M Varma ◽  
Satish Kumar P

Gliclazide is an anti-diabetic drug. It is a BCS class-II (poorly water soluble) drug and its bioavailability is dissolution rate limited. The dissolution rate of the drug was enhanced by using the solid dispersion technique. Solid dispersions were prepared using PVP-K30 (polyvinylpyrrolidone) and hydroxypropyl-β-cyclodextrin (HP BCD) as the hydrophilic carriers. The solid dispersions were characterized by using DSC (Differential scanning calorimetry), XRD (X-ray diffractometry) and FTIR (Fourier transform infrared spectroscopy). Solid dispersions were formulated into tablets. The formulated tablets were evaluated for the quality control parameters and dissolution rates. The solid-dispersion tablets enhanced the dissolution rate of the poorly soluble drug. The optimized formulation showed a 3 fold faster drug release compared to the branded tablet. The XRD studies demonstrated the remarkable reduction in the crystallinity of the drug in the solid dispersion. The faster dissolution rate of the drug from the solid dispersion is attributed to the marked reduction in the crystallinity of the drug. The DSC and FTIR studies demonstrated the absence of the drug-polymer interaction.


Author(s):  
Vikrant K. Nikam ◽  
Shubham K. Shete ◽  
Jyoti P. Khapare

Abstract Background The most common problem about conventional dosage form is dysphagia (difficulty in swallowing). So, we design a new approach in a conventional dosage form which is oral dispersible tablet. Oral dispersible tablet is also called as mouth dissolving tablet, fast dissolving tablet, or oral disintegrating tablet. Oral dispersible tablet has advantage as it quickly disintegrates into saliva when it is put on the tongue. The faster the drug disintegrates or is dissolved, the faster the absorption and the quicker the therapeutic effect of drug will be attained. Main text This review article focuses on the progress in methods of manufacturing and various latest technologies involved in the development of oral disintegrating tablet. The solid dispersion technique is one of the novel techniques to manufacturing the oral dispersible tablet. Solid dispersion is basically a drug polymer two component system. Conclusion This review article focuses on advantages, disadvantages, materials used as carrier for solid dispersions, methods of preparation of solid dispersion, classification of solid dispersion, promising drugs that can be incorporated into oral disintegrating tablet by solid dispersion techniques, and recent research in solid dispersion technique using polymers as carriers.


Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4315
Author(s):  
Bin Bin Huang ◽  
Dong Xu Liu ◽  
De Kun Liu ◽  
Gang Wu

The solid dispersion technique, which is widely used in the medical field, was applied to prepare a pesticide dosage form of emamectin benzoate (EM). The preparation, physicochemical characterization, aqueous solubility, release dynamics, photolytic degradation, bioactivity, and sustained-release effects of the prepared EM solid dispersions were studied by a solvent method, using polymer materials as the carriers. Water-soluble polyvinyl pyrrolidone (PVP) K30 and water-insoluble polyacrylic resin (PR)III were used as the carriers. The influence of various parameters, such as different EM:PVP-K30 and EM:PRIII feed ratios, solvent and container choices, rotational speed and mixing time effects on pesticide loading, and the entrapment rate of the solid dispersions were investigated. The optimal conditions for the preparation of EM-PVP-K30 solid dispersions required the use of methanol and a feed ratio between 1:1 and 1:50, along with a rotational speed and mixing time of 600 rpm and 60 min, respectively. For the preparation of EM-PRIII solid dispersions, the use of methanol and a feed ratio between 1:4 and 1:50 were required, in addition to the use of a porcelain mortar for carrying out the process. Under optimized conditions, the prepared EM-PVP-K30 solid dispersions resembled potato-like, round, and irregular structures with a jagged surface. In contrast, the EM-PRIII solid dispersions were irregular solids with a microporous surface structure. The results of X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), ultraviolet (UV) spectrometry, and infrared (IR) spectrometry showed that the solid dispersions were formed by intermolecular hydrogen bonding. The solid dispersion preparation in PVP-K30 significantly improved the solubility and dissolution rate of EM, particularly the aqueous solubility, which reached a maximum of 37.5-times the EM technical solubility, when the feed ratio of 1:10 was employed to prepare the dispersion. Importantly, the wettable powder of EM-PVP-K30 solid dispersion enhanced the insecticidal activity of EM against the Plutella xylostella larvae. Furthermore, the solid dispersion preparation in PRIII afforded a significant advantage by prolonging the EM technical release in water at a pH below 7.0, especially when the PRIII content in solid dispersions was high. While the amplified toxicity of the wettable powder of EM-PRIII solid dispersions against the P. xylostella larvae showed no significant differences from that of the EM technical, the long-term toxicity under the field condition was much better than that of the commercially available EM 1.5% emulsifiable concentrate. Notably, solid dispersions with both the PVP-K30 and PRIII carriers reduced the effect of UV photolysis.


2012 ◽  
Vol 4 (2) ◽  
pp. 42-47
Author(s):  
Irwin Dewan ◽  
SM Ashraful Islam ◽  
Mohammad Shahriar

The main objective of the current study was to formulate poorly water soluble drug Spirinolactone by using solid dispersion technique in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. Solid dispersions were prepared using two methods; solvent method and fusion method. Solid dispersion was prepared by using polymers, such as Hydroxy propylymethyl cellulose (HPMC 6cp), Hydroxy propyl cellulose (HPC), Sodium carboxymethylcellulose (Na-CMC), Povidone K12, Povidone K30, Poloxamer 407. Solid dispersions containing Spironolactone with HPC (96.81%), HPMC 6cp (93.05%), Poloxamer 407 (90.84%) and Na-CMC (89.93%) provided higher release rate than the release rate of solid dispersion containing only Spironolactone (35.27%), and Spironolactone with Povidone K12 (76.17%), Povidone K30 (67.92%). So the present study revealed that the solid dispersion may be an ideal means of drug delivery system for poorly water soluble drugs. Further study in this field was required to establish these drug delivery systems so that in future it can be used effectively in commercial basis.DOI: http://dx.doi.org/10.3329/sjps.v4i2.7776S. J. Pharm. Sci. 4(2) 2011: 42-47


2012 ◽  
Vol 11 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Md Abdullah Al Masum ◽  
Florida Sharmin ◽  
S M Ashraful Islam ◽  
Md Selim Reza

In this study solid dispersions (SDs) of ibuprofen were prepared by melt dispersion technique using macrogol 4000 and macrogol 6000 as carrier. Physical mixtures (PMs) of ibuprofen were also prepared with the same carrier and in the same drug-carrier ratio (1:0.5, 1:1 and 1:1.5) to compare the dissolution profile. The solid dispersions and physical mixtures were investigated for drug loading, saturation solubility and dissolution behavior. Saturation solubility study was carried out in phosphate buffer (pH 7.2), 0.1 N HCl solution and distilled water. Solid dispersions were found effective to enhance the solubility of ibuprofen significantly in all the media. Dissolution test was carried out in two different media, phosphate buffer (pH 7.2) and 0.1 N HCl. Solid dispersion containing macrogol 6000 at the ratio of 1:1.5 (drug: carrier) showed faster and higher drug release and was found to be most effective among all the solid dispersions. Drug carrier interactions were studied by comparing Fourier Transform Infrared Spectroscopy (FT-IR) of solid dispersions with pure drug which revealed that the SDs were stable. So, solid dispersion may be an effective technique to enhance dissolution rate of ibuprofen. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12480 Dhaka Univ. J. Pharm. Sci. 11(1): 1-6, 2012 (June)


2020 ◽  
Vol 9 (4) ◽  
pp. 79-87
Author(s):  
D. V. Demchenko ◽  
E. A. Jain (Korsakova) ◽  
V. Yu. Balabanyan ◽  
M. N. Makarova ◽  
V. G. Makarov

Introduction. 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil is a substance of scientific interest intended for the treatment of HIV-infection. However, its low bioavailability is a major limitation in successful drug delivery by oral route. Therefore, the objective of the present work was to enhance itssolubility by using solid dispersion technique followed by the development of a solid dosage form.Aim. Development of the composition and technology of tablets based on 1- [2-(2-benzoylphenoxy)ethyl]-6-methyluracil with the appropriate technological properties providing the most complete release of the active pharmaceutical ingredient (API) in vitro.Materials and methods. The pharmaceutical substance 1-[2-(2-benzoylphenoxy) ethyl]-6-methyluracil is a crystalline powder with poor solubility. Solid dispersions were prepared using Lactose, Kollidon® 17PF, Kollidon® 30, Kollidon® VA64, Kollidon 90F, and PEG-6000 as a carrier mostly in 1:4 ratio by two methods – co-melting and solvent evaporation. The technological properties of substance, tablet masses and tablet quality were determined according to the methods described in the State Pharmacopoeia of the Russian Federation (14th edition).Results and discussion. Article shows the results of development of the composition and technology of a medicine in the form of tablets based on the substance 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil. Solid dispersion technique was used to improve the biopharmaceutical properties of 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil.Conclusion. In vitro dissolution studies showed enhanced dissolution rate of the drug-loaded solid dispersion with Kollidon 17PF as a carrier as compared to pure drug.


Sign in / Sign up

Export Citation Format

Share Document