aqueous solubility
Recently Published Documents


TOTAL DOCUMENTS

1514
(FIVE YEARS 542)

H-INDEX

74
(FIVE YEARS 10)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 203
Author(s):  
Simona Ioniţă ◽  
Daniel Lincu ◽  
Raul-Augustin Mitran ◽  
Laila Ziko ◽  
Nada K. Sedky ◽  
...  

Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol–loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 534
Author(s):  
Ali Rashidinejad ◽  
Geoffrey B. Jameson ◽  
Harjinder Singh

Poor water solubility and low bioavailability of hydrophobic flavonoids such as rutin remain as substantial challenges to their oral delivery via functional foods. In this study, the effect of pH and the addition of a protein (sodium caseinate; NaCas) on the aqueous solubility and stability of rutin was studied, from which an efficient delivery system for the incorporation of rutin into functional food products was developed. The aqueous solubility, chemical stability, crystallinity, and morphology of rutin (0.1–5% w/v) under various pH (1–11) and protein concentrations (0.2–8% w/v) were studied. To manufacture the concentrated colloidally stable rutin–NaCas particles, rutin was dissolved and deprotonated in a NaCas solution at alkaline pH before its subsequent neutralisation at pH 7. The excess water was removed using ultrafiltration to improve the loading capacity. Rutin showed the highest solubility at pH 11, while the addition of NaCas resulted in the improvement of both solubility and chemical stability. Critically, to achieve particles with colloidal stability, the NaCas:rutin ratio (w/w) had to be greater than 2.5 and 40 respectively for the lowest (0.2% w/v) and highest (4 to 8% w/v) concentrations of NaCas. The rutin–NaCas particles in the concentrated formulations were physically stable, with a size in the range of 185 to 230 nm and zeta potential of −36.8 to −38.1 mV, depending on the NaCas:rutin ratio. Encapsulation efficiency and loading capacity of rutin in different systems were 76% to 83% and 2% to 22%, respectively. The concentrated formulation containing 5% w/v NaCas and 2% w/v rutin was chosen as the most efficient delivery system due to the ideal protein:flavonoid ratio (2.5:1), which resulted in the highest loading capacity (22%). Taken together, the findings show that the delivery system developed in this study can be a promising method for the incorporation of a high concentration of hydrophobic flavonoids such as rutin into functional foods.


Author(s):  
Kaining Duanmu ◽  
Amity Andersen ◽  
Peiyuan Gao ◽  
Wei Wang ◽  
Vijayakumar Murugesan

2022 ◽  
Vol 15 (1) ◽  
pp. 85
Author(s):  
Xia Niu ◽  
Xiaomei Wang ◽  
Bingyu Niu ◽  
Yucheng Wang ◽  
Hongwei He ◽  
...  

Liver fibrosis is challenging to treat because of the lack of effective agents worldwide. Recently, we have developed a novel compound, N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamido) benzamide referred to as IMB16-4. However, its poor aqueous solubility and poor oral bioavailability obstruct the drug discovery programs. To increase the dissolution, improve the oral bioavailability and enhance the antifibrotic activity of IMB16-4, PVPK30 was selected to establish the IMB16-4 nanoparticles. Drug release behavior, oral bioavailability, and anti-hepatic fibrosis effects of IMB16-4 nanoparticles were evaluated. The results showed that IMB16-4 nanoparticles greatly increased the dissolution rate of IMB16-4. The oral bioavailability of IMB16-4 nanoparticles was improved 26-fold compared with that of pure IMB16-4. In bile duct ligation rats, IMB16-4 nanoparticles significantly repressed hepatic fibrogenesis and improved the liver function. These findings indicate that IMB16-4 nanoparticles will provide information to expand a novel anti-hepatic fibrosis agent.


2022 ◽  
Author(s):  
Jaru Taechalertpaisarn ◽  
Satoshi Ono ◽  
Okimasa Okada ◽  
Timothy C. Johnstone ◽  
R. Scott Lokey

Despite the notoriously poor membrane permeability of peptides in general, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of “undruggable” intracellular targets. A major impediment to designing cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. Strategies for mitigating the deleterious effect of the backbone NH group on permeability include N-methylation, steric occlusion, and the formation of intramolecular hydrogen bonds with backbone carbonyl oxygens, while there have been relatively few studies on the use of polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinyl glutamine (Pye), whose side chain contains a powerful hydrogen bond accepting C=O amide group but no hydrogen bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses of partition coefficients, lipophilic permeability efficiencies (LPE), artificial and cell-based permeability assays revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Introduction of the Pye residue thus offers a complementary tool, alongside traditional approaches, for improving membrane permeability and solubility in cyclic peptides.


2022 ◽  
Vol 16 (1) ◽  
pp. 31
Author(s):  
Syed Waqar Hussain Shah ◽  
Iram Bibi ◽  
Sabat Yousaf

Novel derivatives of cationic surfactant cetyltrimethylammonium bromide (CTAB) possessing anions of ibuprofen and naproxen as hydrophobic counterions were synthesized and characterized using Fourier transform infrared and differential electronic absorption spectroscopy. The self-assembly of each surfactant was investigated using surface tensiometry. The self-immolative nature of these compounds was analyzed through study of their behavior in response to trigger such as medium pH.  ADMET-SAR (adsorption, distribution, metabolism, excretion, toxicity – structure-activity relationship) profiles of synthesized surfactants were generated using admetSAR v. 1.0). The cetrimonium drugs exhibited better profiles than the corresponding pure drugs, save the aqueous solubility which was reduced due to hydrophobicity of counterions.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 133
Author(s):  
Nikoleta F. Theodoroula ◽  
Christina Karavasili ◽  
Manos C. Vlasiou ◽  
Alexandra Primikyri ◽  
Christia Nicolaou ◽  
...  

Fibrillar structures derived from plant or animal origin have long been a source of inspiration for the design of new biomaterials. The Asn-Gly-Ile-Trp-Tyr-NH2 (NGIWY-amide) pentapeptide, isolated from the sea cucumber Apostichopus japonicus, which spontaneously self-assembles in water to form hydrogel, pertains to this category. In this study, we evaluated this ultra-short cosmetic bioinspired peptide as vector for local drug delivery applications. Combining nuclear magnetic resonance, circular dichroism, infrared spectroscopy, X-ray diffraction, and rheological studies, the synthesized pentapeptide formed a stiff hydrogel with a high β-sheet content. Molecular dynamic simulations aligned well with scanning electron and atomic-force microscopy studies, revealing a highly filamentous structure with the fibers adopting a helical-twisted morphology. Model dye localization within the supramolecular hydrogel provided insights on the preferential distribution of hydrophobic and hydrophilic compounds in the hydrogel network. That was further depicted in the diffusion kinetics of drugs differing in their aqueous solubility and molecular weight, namely, doxorubicin hydrochloride, curcumin, and octreotide acetate, highlighting its versatility as a delivery vector of both hydrophobic and hydrophilic compounds of different molecular weight. Along with the observed cytocompatibility of the hydrogel, the NGIWY-amide pentapeptide may offer new approaches for cell growth, drug delivery, and 3D bioprinting tissue-engineering applications.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Fengjie Liu ◽  
Meng Lan ◽  
Baoqi Ren ◽  
Lihong Li ◽  
Tengteng Zou ◽  
...  

Abstract Background Breast cancer is the most frequently occurring cancer among women. Baicalin has been shown to inhibit breast cancer proliferation, but poor aqueous solubility and unknown mechanism of action limit its application. This study aimed to investigate the antiproliferative effects of baicalin-loaded folic acid-modified albumin nanoparticles (FA-BSANPs/BA) in breast cancer MCF-7 cells and its relationship with autophagy and ROS-mediated p38 MAPK and Akt/mTOR signaling pathways. Cell viability was detected by MTT assay. Flow cytometry and fluorescence microscopy were used to detect cell cycle, apoptosis and autophagy. Western blot was used to detect protein expression. Results Compared with the control and free baicalin groups, FA-BSANPs/BA inhibited viability of MCF-7 cells and increased cells in S phase, apoptotic bodies, pro-apoptotic proteins, autophagy markers and autophagosomes. These effects could be reversed when combined with the autophagy inhibitor 3-methyladenine. FA-BSANPs/BA increased the levels of phosphorylated p38 MAPK, inhibited the levels of phosphorylated Akt and mTOR, and increased the level of ROS in MCF-7 cells. The effects of FA-BSANPs/BA could be reversed or enhanced using inhibitors of Akt, mTOR, p38 MAPK and ROS scavengers. Conclusions Encapsulation in folate albumin nanoparticles improved the antiproliferative activity of baicalin. FA-BSANPs/BA induced autophagy and apoptosis via ROS-mediated p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.


2022 ◽  
Vol 12 ◽  
Author(s):  
Maan T. Khayat ◽  
Abdelsattar M. Omar ◽  
Farid Ahmed ◽  
Mohammad I. Khan ◽  
Sara M. Ibrahim ◽  
...  

Structural changes of small-molecule drugs may bring interesting biological properties, especially in the field of kinase inhibitors. We sought to study tirbanibulin, a first-in-class dual Src kinase (non-ATP competitive)/tubulin inhibitor because there was not enough reporting about its structure–activity relationships (SARs). In particular, the present research is based on the replacement of the outer ring of the biphenyl system of 2-[(1,1′-biphenyl)-4-yl]-N-benzylacetamide, the identified pharmacophore of KX chemotype, with a heterocyclic ring. The newly synthesized compounds showed a range of activities in cell-based anticancer assays, agreeing with a clear SAR profile. The most potent compound, (Z)-N-benzyl-4-[4-(4-methoxybenzylidene)-2-methyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl]phenylacetamide (KIM-161), demonstrated cytotoxic IC50 values at 294 and 362 nM against HCT116 colon cancer and HL60 leukemia cell lines, respectively. Profiling of this compound (aqueous solubility, liver microsomal stability, cytochrome P450 inhibition, reactivity with reduced glutathione, and plasma protein binding) confirmed its adequate drug-like properties. Mechanistic studies revealed that this compound does not depend on tubulin or Src kinase inhibition as a factor in forcing HL60 to exit its cell cycle and undergo apoptosis. Instead, KIM-161 downregulated several other kinases such as members of BRK, FLT, and JAK families. It also strongly suppresses signals of ERK1/2, GSK-3α/β, HSP27, and STAT2, while it downregulated AMPKα1 phosphorylation within the HL60 cells. Collectively, these results suggest that phenylacetamide-1H-imidazol-5-one (KIM-161) could be a promising lead compound for further clinical anticancer drug development.


2022 ◽  
Vol 34 (2) ◽  
pp. 383-388
Author(s):  
Gayatri Joshi ◽  
Abhishek Tiwari ◽  
Prashant Upadhyay

Piperine is classified as a class II drug in the biopharmaceutical classification system due to its low aqueous solubility. As a result, piperine herbosomes were created to improve the dissolution rate and in vivo liver protecting activity of piperine and physico-chemical characteristics were used to confirm herbosome formation. The piperine-herbosome formulation revealed spherical particle size of all formulations from P1-P10 and found142.4 ± 0.98 nm for best piperine-herbosome formulation (P2) and a PDI value of 0.237, indicating a homogeneous population of piperine loaded vesicles. In vitro drug release rate and percent entrapment efficiency were determined for all formulations P1-P25 and found to be 95.306 ± 0.21 and 97.306 ± 0.65 in 12 h, respectively for best piperine-herbosome formulation (P2). It exemplifies the complex’s long-term releasing capability. This information suggests that it may have a longer retention time inside the body, extending the duration of effect. The antioxidant potential of pure piperine was determined using the DPPH scavenging method, with an IC50 value of 107.59 ± 0.11 g/mL compared to a formulation with an IC50 value of 93.926 ± 0.03 g/mL. Swiss albino mice of either sex were utilized for the evaluation of hepatoprotective activity. On the 8th day, the hepatotoxicity was caused by giving a single oral dosage of CCl4 (0.5 mL) and the parameters were evaluated on the 9th day. This formulation has the best optimized based on drug content and drug entrapment. Serum glutamic oxaloacetic transaminase (SGOT), serum glutamic-pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and total bilirubin were among the biochemical markers measured. In comparison to normal control (161 ± 0.31 IU/L, 52.78 ± 0.28 IU/L, 121.12 ± 0.14 IU/L and 0.633 ± 1.44 IU/L) and P2 formulation (163.23 ± 0.49 IU/L, 66.9 ± 0.05 IU/L, 128.3 ± 1.15 IU/L and 0.645 ± 0.67 IU/L respectively).


Sign in / Sign up

Export Citation Format

Share Document