Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009
The Arctic polar vortex is often affected by wave activity during its life cycle. The planetary Rossby waves propagating from the troposphere to the stratosphere occasionally lead to the displacement or splitting of the polar vortex, accompanied by sudden stratospheric warming (SSW). In January 2009, one of the largest SSWs was observed in the Arctic. In this work, the dynamics of the polar vortex during the 2009 SSW is considered using a new method that allows one to estimate the vortex area, the wind speed at the vortex edge, the mean temperature and ozone mass mixing ratio inside the vortex, based on the fact that the Arctic vortex edge at the 50 and 10 hPa pressure levels is determined by the geopotential values, respectively, 19.5. 104 and 29.5. 104 m2 /s2 , using the ERA5 reanalysis data. The application of this method is justified for the Arctic polar vortex, which is characterized by significant variability, especially during the period of its splitting. The splitting of the polar vortex in 2009 was observed on January 24 and 28, respectively, in the middle and lower stratosphere. About a week after the splitting, the vortices became closer in characteristics to small cyclones, which completely collapsed within 1–3 weeks. The influence of planetary wave activity on the polar vortex does not always lead to its breakdown. Short-term splitting of the polar vortex is sometimes observed for several days after which the polar vortex strengthens again and PSCs form inside the vortex. Such a recovery of the polar vortex is most likely to occur in the winter. Based on the analysis of the dynamics of the Arctic polar vortex for 1979–2020 and using the example of the 2009 SSW, we showed that when the vortex area decreases to less than 10 million km2 and the mean wind speed at the vortex edge decreases below 30 and 45 m/s, respectively, in the lower and middle stratosphere, the polar vortex becomes a small cyclone (with significantly higher temperatures within it), which usually collapses within 3 weeks.