Analyzing ozone variations and uncertainties at high latitudes during Sudden Stratospheric Warming events using MERRA-2
Abstract. Stratospheric circulation is a critical part of the Arctic ozone cycle. Sudden stratospheric warming events (SSWs) manifest the strongest alteration of stratospheric dynamics. Changes in planetary wave propagation vigorously influence zonal mean zonal wind, temperature, and tracer concentrations in the stratosphere over the high latitudes. In this study, we examine six major SSWs from 2004 to 2020 using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). Using the unique density of observations around the Greenland sector at high latitudes, we perform comprehensive comparisons of high latitude observations with the MERRA-2 ozone dataset during the six major SSWs. Our results show that MERRA-2 captures the high variability of mid stratospheric ozone fluctuations during SSWs over high latitudes. However, larger uncertainties are observed in the lower stratosphere and troposphere. The zonally averaged stratospheric ozone shows a dramatic increase of 9–29 % in total column ozone (TCO) near the time of each SSW, which lasts up to two months. The SSWs exhibit a more significant impact on ozone over high northern latitudes when the polar vortex is mostly elongated as seen in 2009 and 2018 compared to the events in which the polar vortex is displaced towards Europe. The regional impact of SSWs over Greenland has a similar structure as the zonal average, however, exhibits more intense ozone anomalies which is reflected by 15–37 % increase in TCO. The influence of SSW on mid stratospheric ozone levels persists longer than their impact on temperature. This paper is focused on the increased (suppressed) wave activity before (after) the SSWs and their impact on ozone variability at high latitudes. This includes an investigation of the different terms of tracer continuity using MERRA-2 parameters, which emphasizes the key role of vertical advection on mid-stratospheric ozone during the SSWs.