Development of Silver Nanoparticles/PEG/Glycerine Composite for Antibacterial Effect using Leaf Extract of Ocimum sanctum and Ocimum basilicum
The main purpose of the experiment is to use green synthesis method for silver nanoparticles (SNP) fabrication using phytochemical and functional groups inherent in aqueous leaf extract of Ocimum sanctum and Ocimum basilicum for formulation of polyethylene glycol (PEG)/ Glycerine film. The SNP synthesis reaction is performed under sun condition and change in colour from light brown to dark brown was the initial indication, observed for nanoparticles synthesis. The 95 mL of 0.001 M AgNO3 is mixed with 5 mL of leaf extract and reaction performed under Sun light at alkaline pH 8 was found efficient to produced stable NP. The synthesized SNP are mixed with (10%, 50%, 100%, 150%, 200% and 250%), polyethylene glycol (PEG):glycerine (G) in 1:1 ratio to form a film. The UV-spectroscopic analysis confirms absorption at 420-430 nm for synthesized SNP. The FTIR characterization determines alkynes (terminal), 1�, 2� amines, amides, nitriles, alkynes, alkyl halides functional group from O. sanctum (OS) leaf extract and aldehydes, alkynes (terminal), alkyne, alkene, from O. basilicum (OB) leaf extract responsible for reducing and capping silver nitrate to form nanoparticles. The SEM analysis verify that the O. sanctum based nanoparticles are spherical in shape although O. basilicum based nanoparticles have bright contrast coral reef like morphology. The average zeta potential of silver nanoparticles was found to be 27.74 mV and 23.50 mV that are embedded in Ocimum sanctum-SNP/PEG and Ocimum basilicum-SNP/PEG films. Also, the average diameters of SNP in Ocimum sanctum-SNP/PEG and in Ocimum basilicum-SNP/PEG was found to be 463.2 nm and 43.0 nm. These Sun light mediated SNP shows antimicrobial activity against E. coli and S. aureous pathogens.