PERMEABILITY OF CELLS AND ITS IMPORTANCE IN ASSESSMENT OF FISHES AGE

Author(s):  
N. I. Maslova

The article presents analysis of material and results of their own studies on changes in the permeability of cellular structures, organs and tissues in carp, which is of great importance in determining age-related indicators. The cells permeability in liver and gonads estimation was carried out under the experimental base of VNIIR on two carp genotypes during the pre-spawning period. The carp groups taken for analysis differed significantly in their genotypes. In females of the Khrapunov group the fecundity was 2023.0 thousand units, while the number of oocytes filled with yolk was only 0.7%, in the Ostashevsky ones - 1370.0 thousand units and 8.6%, respectively. During estimation the chemical composition of the generative tissue in females and males it was established that the cholesterol and lecithin content in males is higher than that of females, while feeding dependence is observed, especially on the amount of protein in the diet. For example, in females on protein diet contained less glycogen in gonads than on females on carbohydrate diet. Lecithin and cholesterol are higher in males than in females, which corresponds to increasing the Gyurdy Ratio (estimation of cell membrane strength). In spermatogenesis the content of phospholipids and cholesterol in the liver was decreased less than during ovogenesis. This indicates a lower level of synthetic processes in the milts compared with the ovaries. The cholesterol content in sperm is higher than in caviar in 19.6 times, and phospholipids almost doubled. With increasing age, the Gyordy Ratio for caviar decreases, for sperm it increases, the percentage of caviar fertilization increases. As the body age metabolism deteriorates, cellular permeability decreases (the ratio of lecithin and cholesterol changes significantly). At the same time, the permeability of cells in different organs and tissues varies and depends on living conditions, especially feeding and to some extent on the origin. In fish the gross productivity decreases as growth slows down and more energy is spent on adaptation to environmental conditions.

Author(s):  
A. E. Chernikova ◽  
Yu. P. Potekhina

Introduction. An osteopathic examination determines the rate, the amplitude and the strength of the main rhythms (cardiac, respiratory and cranial). However, there are relatively few studies in the available literature dedicated to the influence of osteopathic correction (OC) on the characteristics of these rhythms.Goal of research — to study the influence of OC on the rate characteristics of various rhythms of the human body.Materials and methods. 88 adult osteopathic patients aged from 18 to 81 years were examined, among them 30 men and 58 women. All patients received general osteopathic examination. The rate of the cranial rhythm (RCR), respiratory rate (RR) heart rate (HR), the mobility of the nervous processes (MNP) and the connective tissue mobility (CTM) were assessed before and after the OC session.Results. Since age varied greatly in the examined group, a correlation analysis of age-related changes of the assessed rhythms was carried out. Only the CTM correlated with age (r=–0,28; p<0,05) in a statistically significant way. The rank dispersion analysis of Kruskal–Wallis also showed statistically significant difference in this indicator in different age groups (p=0,043). With the increase of years, the CTM decreases gradually. After the OC, the CTM, increased in a statistically significant way (p<0,0001). The RCR varied from 5 to 12 cycles/min in the examined group, which corresponded to the norm. After the OC, the RCR has increased in a statistically significant way (p<0,0001), the MNP has also increased (p<0,0001). The initial heart rate in the subjects varied from 56 to 94 beats/min, and in 15 % it exceeded the norm. After the OC the heart rate corresponded to the norm in all patients. The heart rate and the respiratory rate significantly decreased after the OC (р<0,0001).Conclusion. The described biorhythm changes after the OC session may be indicative of the improvement of the nervous regulation, of the normalization of the autonomic balance, of the improvement of the biomechanical properties of body tissues and of the increase of their mobility. The assessed parameters can be measured quickly without any additional equipment and can be used in order to study the results of the OC.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


1924 ◽  
Vol 23 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Leonard P. Lockhart

1. The appearance and disappearance of typhoid bacilli in the faeces in these four cases bore no relation to changes in the diet nor to the physical state of the stools, but the later they appeared the shorter was the duration of their appearance.On the disappearance of typhoid bacilli from the stools the intestinal flora tended to become more simple.2. B. coli was the only organism invariably present at every examination.3. Streptococci were very much more abundant in the earlier stages of the disease, when milk formed the greater part of the diet, than in the later stages.4. In two cases where boils occurred on the body the causative organism had previously been isolated in large numbers from the faeces.5. With stools slightly alkaline to litmus the flora in these cases was relatively simple and fermentative in type. There is no apparent advantage, therefore, in giving a high carbohydrate diet except in cases of marked alkalinity and putrefaction.


2014 ◽  
Vol 49 (5) ◽  
pp. 647-653 ◽  
Author(s):  
Ann M. Cools ◽  
Tanneke Palmans ◽  
Fredrik R. Johansson

Context Tennis requires repetitive overhead movements that can lead to upper extremity injury. The scapula and the shoulder play a vital role in injury-free playing. Scapular dysfunction and glenohumeral changes in strength and range of motion (ROM) have been associated with shoulder injury in the overhead athlete. Objective To compare scapular position and strength and shoulder ROM and strength between Swedish elite tennis players of 3 age categories (&lt;14, 14–16, and &gt;16 years). Design Cross-sectional study. Setting Tennis training sports facilities. Patients or Other Participants Fifty-nine adolescent Swedish elite tennis players (ages 10–20 years) selected based on their national ranking. Main Outcome Measure(s) We used a clinical screening protocol with a digital inclinometer and a handheld dynamometer to measure scapular upward rotation at several angles of arm elevation, isometric scapular muscle strength, glenohumeral ROM, and isometric rotator cuff strength. Results Players older than 16 years showed less scapular upward rotation on the dominant side at 90° and 180° (P &lt; .05). Although all absolute scapular muscle strength values increased with age, there was no change in the body-weight–normalized strength of the middle (P = .9) and lower (P = .81) trapezius or serratus anterior (P = .17). Glenohumeral internal-rotation ROM and total ROM tended to decrease, but this finding was not statistically significant (P = .052 and P = .06, respectively). Whereas normalized internal-rotator strength increased from 14 to 16 years to older than 16 years (P = .009), normalized external-rotator and supraspinatus strength remained unchanged. Conclusions Age-related changes in shoulder and scapular strength and ROM were apparent in elite adolescent tennis players. Future authors should examine the association of these adaptations with performance data and injury incidence.


1984 ◽  
Vol 5 (10) ◽  
pp. 305-315
Author(s):  
Sarah S. Long

The summary in Table 1 could be used as a mental checklist for the pediatrician who examines a child with fever. Whether the pediatrician opts to "keep the rules" or appropriately decides to "break the rules," knowledge of the guidelines will help him to focus his approach and to adopt attitudes of caution in certain circumstances. The body of knowledge of infectious agents chemotherapeutic agents has burgeoned over the past 40 years; the rules have changed very little. Thus, the rules might also serve as standards against which "new discoveries" that dictate departure from an established mode of clinical practice would have to be weighed. The adage, "Name the bug before you choose a drug," is especially germaine to pediatrics. Potential pathogens or "bugs" continually change as the patient's age, exposure, and immunity change. The serious diseases they cause mandate that initial treatment be given with the best "drugs." The age-related causes of bacterial meningitis presented in Table 2 could serve as a primer for age-related causes of other invasive disease as well. For bone, joint, and soft tissue infection as well as for septicemia without a focus the age line for group B Streptococcus and H influenzae would be extended upward and S aureus would be added for all ages. Although the relative importance of each pathogen for each clinical entity might vary, therapeutic considerations would be appropriately served by a schema such as this. Unfortunately, the susceptibility of pathogens to antimicrobial agents will continue to change. Fortunately, new and potentially better therapeutic agents will continue to be discovered or invented. When new problems of antibiotic resistance emerge or when superior therapeutic modalities are proved, the pediatrician must be knowledgeable of such events and be prepared for change.


2018 ◽  
Vol 11 (4) ◽  
pp. 112 ◽  
Author(s):  
Wanting Shu ◽  
Joshua Dunaief

Iron is essential for life, while excess iron can be toxic. Iron generates hydroxyl radical, which is the most reactive free radical, causing oxidative stress. Since iron is absorbed through the diet but not excreted from the body, it accumulates with age in tissues, including the retina, consequently leading to age-related toxicity. This accumulation is further promoted by inflammation. Hereditary diseases such as aceruloplasminemia, Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration, and posterior column ataxia with retinitis pigmentosa involve retinal degeneration associated with iron dysregulation. In addition to hereditary causes, dietary or parenteral iron supplementation has been recently reported to elevate iron levels in the retinal pigment epithelium (RPE) and promote retinal degeneration. Ocular siderosis from intraocular foreign bodies or subretinal hemorrhage can also lead to retinopathy. Evidence from mice and humans suggests that iron toxicity may contribute to age-related macular degeneration pathogenesis. Iron chelators can protect photoreceptors and RPE in various mouse models. The therapeutic potential for iron chelators is under investigation.


2019 ◽  
Vol 20 (6) ◽  
pp. 1380 ◽  
Author(s):  
Erik Behringer ◽  
Md Hakim

Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2531
Author(s):  
Amandine Grimm

The brain is the most energy-consuming organ of the body and impairments in brain energy metabolism will affect neuronal functionality and viability. Brain aging is marked by defects in energetic metabolism. Abnormal tau protein is a hallmark of tauopathies, including Alzheimer’s disease (AD). Pathological tau was shown to induce bioenergetic impairments by affecting mitochondrial function. Although it is now clear that mutations in the tau-coding gene lead to tau pathology, the causes of abnormal tau phosphorylation and aggregation in non-familial tauopathies, such as sporadic AD, remain elusive. Strikingly, both tau pathology and brain hypometabolism correlate with cognitive impairments in AD. The aim of this review is to discuss the link between age-related decrease in brain metabolism and tau pathology. In particular, the following points will be discussed: (i) the common bioenergetic features observed during brain aging and tauopathies; (ii) how age-related bioenergetic defects affect tau pathology; (iii) the influence of lifestyle factors known to modulate brain bioenergetics on tau pathology. The findings compiled here suggest that age-related bioenergetic defects may trigger abnormal tau phosphorylation/aggregation and cognitive impairments after passing a pathological threshold. Understanding the effects of aging on brain metabolism may therefore help to identify disease-modifying strategies against tau-induced neurodegeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sho Tano ◽  
Tomomi Kotani ◽  
Takafumi Ushida ◽  
Masato Yoshihara ◽  
Kenji Imai ◽  
...  

AbstractWeight gain during interpregnancy period is related to hypertensive disorders of pregnancy (HDP). However, in interpregnancy care/counseling, the unpredictability of the timing of the next conception and the difficulties in preventing age-related body weight gain must be considered while setting weight management goals. Therefore, we suggest considering the annual change in the body mass index (BMI). This study aimed to clarify the association between annual BMI changes during the interpregnancy period and HDP risk in subsequent pregnancies. A multicenter retrospective study of data from 2009 to 2019 examined the adjusted odds ratio (aOR) of HDP in subsequent pregnancies. The aORs in several annual BMI change categories were also calculated in the subgroups classified by HDP occurrence in the index pregnancy. This study included 1,746 pregnant women. A history of HDP (aOR, 16.76; 95% confidence interval [CI], 9.62 − 29.22), and annual BMI gain (aOR, 2.30; 95% CI, 1.76 − 3.01) were independent risk factors for HDP in subsequent pregnancies. An annual BMI increase of ≥ 1.0 kg/m2/year was related to HDP development in subsequent pregnancies for women without a history of HDP. This study provides data as a basis for interpregnancy care/counseling, but further research is necessary to validate our findings and confirm this relationship.


2019 ◽  
Vol 98 (7) ◽  
pp. 761-765 ◽  
Author(s):  
N. I. Prokhorov ◽  
V. I. Dontsov ◽  
Vyacheslav N. Krutko ◽  
T. M. Khodykina

The widespread formation of unfavorable environmental, the swiftness of modern life with large information and psycho-emotional loads and extremely natural and climatic cataclysms, as well as harmful addictions and wrong way of life of modern human, lead to the development of stress and disruption of the mechanisms of adaptation of the human body and its accelerated wear. This stimulates the development of research on the creation of new methods of integrated assessment of health and quantitative assessment of the aging processes of the body systems and the whole body, as well as the possibilities of new methods of risk assessment of climatic and environmentally related pathological and age-related diseases. The aim of the work was to consider the methodology of quantitative assessment of individual health and the rate of aging of the human body on the basis of the system index of Biological age (BA); description of its essence and structure, requirements for tests - biomarkers of aging used as the index of BA, definition of possibilities and scope of application of the BA method in modern practice of Biomedicine. The use of modern methods of scientific analysis - a systematic approach to the analysis of the processes of human aging and determine its quantitative side - the value of BA, allows a reasonable approach to the choice of the number of BM, to take into account their information content and precision, and the cost of diagnostics and availability for different users, to take into account the specific objectives of the researcher. The use of the index-partial BA allows individual approaching the choice of biomarkers and create personalized panels for the definition of BA programs for the prevention of aging in personalized preventive medicine. The complexity of the content and calculation of indices of BA requires automation and the use of methods of modern computer science and computer calculations and programs. For this purpose, we have created special computer software for diagnosing aging by calculating the BA indices with the possibility of choosing BM and automatic calculation of indicators and conclusions.


Sign in / Sign up

Export Citation Format

Share Document