scholarly journals Kinetics and adsorption studies of lead (II) onto activated carbon using low cost adsorbents

2018 ◽  
Vol 20 (2) ◽  
pp. 381-388 ◽  

The removal of Lead (II) from aqueous solutions using Fagopyrum esculentum Moench (Buckwheat) and Bambusa vulgaris (common bamboo) as adsorbents was investigated. The effects of various experimental parameters such as initial concentration, contact time and pH have been studied using batch adsorption technique. All the Adsorption isotherm models fitted well with the adsorption data. However, Freundlich isotherm displayed a better fitting model than the other two isotherm models due to high correlation coefficient (R2). This indicates the applicability of multilayer coverage of the Pb (II) on the surface of adsorbent. The adsorption kinetics was studied using four simplified models and it was found to follow the pseudo-second-order kinetic model which confirmed the applicability of the model. The adsorption mechanism was found to be chemisorption and the rate-limiting step was mainly surface adsorption.

2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


2013 ◽  
Vol 28 (1-2) ◽  
pp. 113-122
Author(s):  
Kedar Nath Ghimire ◽  
Deepak Wagle ◽  
Suman Lal Shrestha

An effective chemically modified adsorbent based on sugarcane waste has been prepared by treating with concentrated sulphuric acid in 2:1weight/volume ratio. Thus prepared adsorbent has been found to be effective in the adsorption of chromium from aqueous medium. The efficacy of the adsorbent in the removal of chromium was evaluated by batch adsorption method. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was found to be 195 mg/g at their optimal pH 1 at which unmodified bagasse has only 58 mg/g. The characterization of adsorbent was done by determining surface area and Boehm’s titration method. Freundlich isotherm and pseudo-second order kinetic model gave better explanation of the adsorption process.


2018 ◽  
Vol 5 (8) ◽  
pp. 180942 ◽  
Author(s):  
J. M. Anne ◽  
Y. H. Boon ◽  
B. Saad ◽  
M. Miskam ◽  
M. M. Yusoff ◽  
...  

In this work, we reported the synthesis, characterization and adsorption study of two β-cyclodextrin (βCD) cross-linked polymers using aromatic linker 2,4-toluene diisocyanate (2,4-TDI) and aliphatic linker 1,6-hexamethylene diisocyanate (1,6-HDI) to form insoluble βCD-TDI and βCD-HDI. The adsorption of 2,4-dinitrophenol (DNP) on both polymers as an adsorbent was studied in batch adsorption experiments. Both polymers were well characterized using various tools that include Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller analysis and scanning electron microscopy, and the results obtained were compared with the native βCD. The adsorption isotherm of 2,4-DNP onto polymers was studied. It showed that the Freundlich isotherm is a better fit for βCD-TDI, while the Langmuir isotherm is a better fit for βCD-HMDI. The pseudo-second-order kinetic model represented the adsorption process for both of the polymers. The thermodynamic study showed that βCD-TDI polymer was more favourable towards 2,4-DNP when compared with βCD-HDI polymer. Under optimized conditions, both βCD polymers were successfully applied on various environmental water samples for the removal of 2,4-DNP. βCD-TDI polymer showed enhanced sorption capacity and higher removal efficiency (greater than 80%) than βCD-HDI (greater than 70%) towards 2,4-DNP. The mechanism involved was discussed, and the effects of cross-linkers on βCD open up new perspectives for the removal of toxic contaminants from a body of water.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


Author(s):  
Donald T. Kukwa ◽  
Peter A. Adie ◽  
Rose E. Kukwa ◽  
Paula D. Kungur

Removal of Pb (II) ion from aqueous solution using Hymenoptera sphecidae (mud-wasp) nest was investigated using a batch process. The effect of pH, contact time and adsorbent dose were also investigated. The result showed that the adsorption of Pb (II) ion onto mud-wasp nest was dependent on pH, contact time and adsorbent dose. Adsorption patterns were analysed in terms of three bi-parameter isotherms of Langmuir, Freundlich and Temkin. Freundlich isotherm gave the best fit to the adsorption data with a correlation coefficient of 0.992, while monolayer sorption capacity yielded 41.667 mg/g. Lagergren’s pseudo first-order and pseudo second-order kinetic models were used to test the adsorption kinetics. The kinetic data were well described by the pseudo second-order kinetic model, suggesting that the process was chemisorption type.  The results showed that mud-wasp nest can be used as a low-cost adsorbent for the removal of Pb (II) ion from aqueous solutions.


2018 ◽  
Vol 16 (1) ◽  
pp. 36 ◽  
Author(s):  
Idha Yulia Ikhsani ◽  
Sri Juari Santosa ◽  
Bambang Rusdiarso

Adsorption of disperse dyes from wastewater onto Ni-Zn LHS (layered hydroxide salts) and Mg-Al LDH (layered double hydroxides) has been compared in this study. Effects of initial pH solution, contact time and initial dye concentration were investigated. The ability of the adsorbent to be reused was also studied. The results showed that acidic condition was favorable for the adsorption of each dyes onto both adsorbent. The adsorption kinetics was studied using pseudo-first-order, pseudo-second-order and Santosa’s kinetics models. The experimental data fits well with the pseudo-second order kinetic model. The equilibrium adsorption data were analyzed using Langmuir and Freundlich isotherm models. The results showed that adsorption of navy blue onto both adsorbent followed Freundlich isotherm adsorption, while yellow F3G followed Langmuir isotherm adsorption. In the application for the adsorption the wastewater containing dyes, Ni-Zn LHS has a better adsorption capacity of 52.33 mg/g than that of Mg-Al LDH that 30.54 mg/g. Calcination of the adsorbent which has already been used increased the adsorption capacity of Mg-Al LDH to 84.75 mg/g, but decreased the adsorption capacity of the Ni-Zn LHS to 42.65 mg/g.


Author(s):  
Fateme Poorsharbaf Ghavi ◽  
Fereshteh Raouf ◽  
Ahmad Dadvand Koohi

Abstract The elimination of diclofenac traces from aqueous environments is important. In this research, the effect of alkaline (NaOH) pretreatment on clinoptilolite before its modification with a surfactant (HDTMA) for diclofenac adsorption under the speculation of the sole presence of diclofenac in the aqueous solution is investigated. The results are compared through isotherm, kinetic, and thermodynamic studies and supplemented by FTIR, SEM, BET, and the zeta potential analyses. The contact time was investigated in a 0–180-min range. The pH effect was studied in a range of 5–10 because of diclofenac dissociation below pH = 5. The effect of the temperature on diclofenac adsorption was also considered by establishing the experiments at 25, 35, and 45 °C. For HDTMA-modified clinoptilolite, Temkin, and for NaOH-HDTMA-modified clinoptilolite, Dubinin–Radushkevich, and Freundlich isotherm models and in both cases, the pseudo-second-order kinetic model fitted the experimental data best. All the enthalpy and the entropy changes were negative, suggesting exothermic adsorption with a decrease in the degree of freedom of diclofenac anions after the adsorption. Furthermore, diclofenac physisorption was confirmed through isotherm and kinetic studies.


Author(s):  
Teba H. Mhawesh ◽  
Ziad T. Abd Ali

The potential application of granules of Granular brick waste as a low-cost sorbent for removal of Pb+2 ions from aqueous solutions has been studied. The properties of Granular brick waste were determined through several tests such as X-Ray diffraction , Energy dispersive X-ray, Scanning electron microscopy , and surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of lead (89.5 %) were 2.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The sorption data obtained by batch experiments subjected to the three isotherm models called Langmuir, Freundlich and   Elovich. The results showed that the Langmuir isotherm model described well the sorption data (R2= 0.9866) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo_first_order and pseudo_second_order. The pseudo-second-order kinetic model was found to agree well with the experimental data.


2016 ◽  
Vol 18 (2) ◽  
pp. 59-67 ◽  
Author(s):  
Ahmed Hassan Alamin ◽  
Lupong Kaewsichan

Abstract Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. The data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment.


Sign in / Sign up

Export Citation Format

Share Document