Removal of Rhodamine B from Wastewater by Rectorite and Sepiolite-Kinetic Study and Equilibrium Isotherm Analyses

2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.

2012 ◽  
Vol 446-449 ◽  
pp. 2960-2963
Author(s):  
Jing Yan Song ◽  
Jing Yang

The adsorption properties of the attapulgite and the rectorite were investigated by removal of a cationic dye, methylene blue (MB) from aqueous solution. The attapulgite and the rectorite were characterized by Fourier transform infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). The analysis of the isotherm equilibrium data using the Langmuir and Freundlich equations showed that the data fitted better with Langmuir model. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the attapulgite exhibited higher adsorption capacity for MB than rectorite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


Author(s):  
Donald T. Kukwa ◽  
Peter A. Adie ◽  
Rose E. Kukwa ◽  
Paula D. Kungur

Removal of Pb (II) ion from aqueous solution using Hymenoptera sphecidae (mud-wasp) nest was investigated using a batch process. The effect of pH, contact time and adsorbent dose were also investigated. The result showed that the adsorption of Pb (II) ion onto mud-wasp nest was dependent on pH, contact time and adsorbent dose. Adsorption patterns were analysed in terms of three bi-parameter isotherms of Langmuir, Freundlich and Temkin. Freundlich isotherm gave the best fit to the adsorption data with a correlation coefficient of 0.992, while monolayer sorption capacity yielded 41.667 mg/g. Lagergren’s pseudo first-order and pseudo second-order kinetic models were used to test the adsorption kinetics. The kinetic data were well described by the pseudo second-order kinetic model, suggesting that the process was chemisorption type.  The results showed that mud-wasp nest can be used as a low-cost adsorbent for the removal of Pb (II) ion from aqueous solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


2015 ◽  
Vol 72 (9) ◽  
pp. 1505-1515 ◽  
Author(s):  
H. Asnaoui ◽  
A. Laaziri ◽  
M. Khalis

Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.


2021 ◽  
Vol 11 (5) ◽  
pp. 13214-13231

An activated carbon was developed from Moringa oleifera seed and modified with iron nanoparticles (AC-Fe) for application in the oils and greases (O&G) adsorption of the produced water. Activated carbon was prepared by pyrolysis and chemical activation using NaOH. Surface modification was performed by the wet impregnation method. AC-Fe was characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analyzer (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Boehm titration, and point of zero charge (pHPZC). The amount of O&G adsorbed on AC-Fe was sensitive to pH, initial concentration and temperature, but independent of ionic strength. Freundlich isotherm adjusted well, confirming the heterogeneous distribution of active sites and multilayer. The pseudo-second-order kinetic model accurately represents the O&G adsorption process by AC-Fe. Under different temperatures, the maximum amount of O&G adsorption in AC-Fe calculated by the pseudo-second-order kinetic model was 121.95 mg g-1 (298 K), 111.11 mg g-1 (303 K), and 106.38 mg g-1 (308 K). This high adsorption capacity demonstrates the new material potential as a low-cost adsorbent for O&G removal.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-8
Author(s):  
Angelica Macalalad ◽  
◽  
Quennie Rose Ebete ◽  
Dominic Gutierrez ◽  
Madelaine Ramos ◽  
...  

The present study is focused on the use of activated carbon derived from water hyacinth (WH-AC) as adsorbent for the removal of Cr(VI) from aqueous solution. The optimized WH-AC was found to be mesoporous and considered as granular. The surface area of 11.564 m2/g was found to have a good adsorption capacity. The adsorption data of the optimized WH-AC followed a pseudo-second order kinetics and the Freundlich isotherm model. Based on the correlation coefficient obtained from pseudo-second-order kinetic model, the R2 values were all above 0.99, which is closer to unity of one (1) indicating that it followed a chemisorption process. The adsorption capacity of WH-AC increased from 1.98 to 4.68 mg/g when adsorbate concentration increased from 20 to 50 mg/l. The overall study proved that the adsorption by activated carbon derived from water hyacinth can be an alternative and efficient technique in hexavalent chromium removal.


2018 ◽  
Vol 16 (1) ◽  
pp. 36 ◽  
Author(s):  
Idha Yulia Ikhsani ◽  
Sri Juari Santosa ◽  
Bambang Rusdiarso

Adsorption of disperse dyes from wastewater onto Ni-Zn LHS (layered hydroxide salts) and Mg-Al LDH (layered double hydroxides) has been compared in this study. Effects of initial pH solution, contact time and initial dye concentration were investigated. The ability of the adsorbent to be reused was also studied. The results showed that acidic condition was favorable for the adsorption of each dyes onto both adsorbent. The adsorption kinetics was studied using pseudo-first-order, pseudo-second-order and Santosa’s kinetics models. The experimental data fits well with the pseudo-second order kinetic model. The equilibrium adsorption data were analyzed using Langmuir and Freundlich isotherm models. The results showed that adsorption of navy blue onto both adsorbent followed Freundlich isotherm adsorption, while yellow F3G followed Langmuir isotherm adsorption. In the application for the adsorption the wastewater containing dyes, Ni-Zn LHS has a better adsorption capacity of 52.33 mg/g than that of Mg-Al LDH that 30.54 mg/g. Calcination of the adsorbent which has already been used increased the adsorption capacity of Mg-Al LDH to 84.75 mg/g, but decreased the adsorption capacity of the Ni-Zn LHS to 42.65 mg/g.


Sign in / Sign up

Export Citation Format

Share Document