In VivoAssessment of Luminal Cross-Sectional Areas and Circumferential Tension-Strain Relations of the Porcine Aorta

1996 ◽  
Vol 30 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Ole Frøbert ◽  
Jan Henrik Storkholm ◽  
Hans Gregersen ◽  
Jens Peder Bagger
Keyword(s):  
Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Author(s):  
Henry I. Smith ◽  
D.C. Flanders

Scanning electron beam lithography has been used for a number of years to write submicrometer linewidth patterns in radiation sensitive films (resist films) on substrates. On semi-infinite substrates, electron backscattering severely limits the exposure latitude and control of cross-sectional profile for patterns having fundamental spatial frequencies below about 4000 Å(l),Recently, STEM'S have been used to write patterns with linewidths below 100 Å. To avoid the detrimental effects of electron backscattering however, the substrates had to be carbon foils about 100 Å thick (2,3). X-ray lithography using the very soft radiation in the range 10 - 50 Å avoids the problem of backscattering and thus permits one to replicate on semi-infinite substrates patterns with linewidths of the order of 1000 Å and less, and in addition provides means for controlling cross-sectional profiles. X-radiation in the range 4-10 Å on the other hand is appropriate for replicating patterns in the linewidth range above about 3000 Å, and thus is most appropriate for microelectronic applications (4 - 6).


Author(s):  
Michel Troyonal ◽  
Huei Pei Kuoal ◽  
Benjamin M. Siegelal

A field emission system for our experimental ultra high vacuum electron microscope has been designed, constructed and tested. The electron optical system is based on the prototype whose performance has already been reported. A cross-sectional schematic illustrating the field emission source, preaccelerator lens and accelerator is given in Fig. 1. This field emission system is designed to be used with an electron microscope operated at 100-150kV in the conventional transmission mode. The electron optical system used to control the imaging of the field emission beam on the specimen consists of a weak condenser lens and the pre-field of a strong objective lens. The pre-accelerator lens is an einzel lens and is operated together with the accelerator in the constant angular magnification mode (CAM).


Author(s):  
M.A. Parker ◽  
K.E. Johnson ◽  
C. Hwang ◽  
A. Bermea

We have reported the dependence of the magnetic and recording properties of CoPtCr recording media on the thickness of the Cr underlayer. It was inferred from XRD data that grain-to-grain epitaxy of the Cr with the CoPtCr was responsible for the interaction observed between these layers. However, no cross-sectional TEM (XTEM) work was performed to confirm this inference. In this paper, we report the application of new techniques for preparing XTEM specimens from actual magnetic recording disks, and for layer-by-layer micro-diffraction with an electron probe elongated parallel to the surface of the deposited structure which elucidate the effect of the crystallographic structure of the Cr on that of the CoPtCr.XTEM specimens were prepared from magnetic recording disks by modifying a technique used to prepare semiconductor specimens. After 3mm disks were prepared per the standard XTEM procedure, these disks were then lapped using a tripod polishing device. A grid with a single 1mmx2mm hole was then glued with M-bond 610 to the polished side of the disk.


Author(s):  
E. R. Macagno ◽  
C. Levinthal

The optic ganglion of Daphnia Magna, a small crustacean that reproduces parthenogenetically contains about three hundred neurons: 110 neurons in the Lamina or anterior region and about 190 neurons in the Medulla or posterior region. The ganglion lies in the midplane of the organism and shows a high degree of left-right symmetry in its structures. The Lamina neurons form the first projection of the visual output from 176 retinula cells in the compound eye. In order to answer questions about structural invariance under constant genetic background, we have begun to reconstruct in detail the morphology and synaptic connectivity of various neurons in this ganglion from electron micrographs of serial sections (1). The ganglion is sectioned in a dorso-ventra1 direction so as to minimize the cross-sectional area photographed in each section. This area is about 60 μm x 120 μm, and hence most of the ganglion fit in a single 70 mm micrograph at the lowest magnification (685x) available on our Zeiss EM9-S.


Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Brian L. Rhoades

A gas reaction chamber has been designed and constructed for the JEM 7A transmission electron microscope which is based on a notably successful design by Hashimoto et. al. but which provides specimen tilting facilities of ± 15° aboutany axis in the plane of the specimen.It has been difficult to provide tilting facilities on environmental chambers for 100 kV microscopes owing to the fundamental lack of available space within the objective lens and the scope of structural investigations possible during dynamic experiments has been limited with previous specimen chambers not possessing this facility.A cross sectional diagram of the specimen chamber is shown in figure 1. The specimen is placed on a platinum ribbon which is mounted on a mica ring of the type shown in figure 2. The ribbon is heated by direct current, and a thermocouple junction spot welded to the section of the ribbon of reduced cross section enables temperature measurement at the point where localised heating occurs.


Author(s):  
C.M. Sung ◽  
M. Levinson ◽  
M. Tabasky ◽  
K. Ostreicher ◽  
B.M. Ditchek

Directionally solidified Si/TaSi2 eutectic composites for the development of electronic devices (e.g. photodiodes and field-emission cathodes) were made using a Czochralski growth technique. High quality epitaxial growth of silicon on the eutectic composite substrates requires a clean silicon substrate surface prior to the growth process. Hence a preepitaxial surface cleaning step is highly desirable. The purpose of this paper is to investigate the effect of surface cleaning methods on the epilayer/substrate interface and the characterization of silicon epilayers grown on Si/TaSi2 substrates by TEM.Wafers were cut normal to the <111> growth axis of the silicon matrix from an approximately 1 cm diameter Si/TaSi2 composite boule. Four pre-treatments were employed to remove native oxide and other contaminants: 1) No treatment, 2) HF only; 3) HC1 only; and 4) both HF and HCl. The cross-sectional specimens for TEM study were prepared by cutting the bulk sample into sheets perpendicular to the TaSi2 fiber axes. The material was then prepared in the usual manner to produce samples having a thickness of 10μm. The final step was ion milling in Ar+ until breakthrough occurred. The TEM samples were then analyzed at 120 keV using the Philips EM400T.


Sign in / Sign up

Export Citation Format

Share Document