scholarly journals A Novel Adversarial Relighting via Face Recognition

2021 ◽  
Author(s):  
ANDO Shizutoshi

Deep facial recognition (FR) has reached very high accuracy on various demanding datasets and encourages successful real-world applications, even demonstrating strong tolerance to illumination change, which is commonly viewed as a major danger to FR systems. In the real world, however, illumination variance produced by a variety of lighting situations cannot be adequately captured by the limited facsimile. To this end, we first propose the physical model- based adversarial relighting attack (ARA) denoted as albedo- quotient-based adversarial relighting attack (AQ-ARA). It generates natural adversarial light under the physical lighting model and guidance of FR systems and synthesizes adversarially relighted face images. Moreover, we propose the auto-predictive adversarial relighting attack (AP-ARA) by training an adversarial relighting network (ARNet) to automatically predict the adversarial light in a one-step manner according to different input faces, allowing efficiency-sensitive applications . More importantly, we propose to transfer the above digital attacks to physical ARA (Phy- ARA) through a precise relighting device, making the estimated adversarial lighting condition reproducible in the real world. We validate our methods on three state-of-the-art deep FR methods, i.e., FaceNet, ArcFace, and CosFace, on two public datasets. The extensive and insightful results demonstrate our work can generate realistic adversarial relighted face images fooling FR easily, revealing the threat of specific light directions and strengths.

2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2020 ◽  
Vol 68 ◽  
pp. 311-364
Author(s):  
Francesco Trovo ◽  
Stefano Paladino ◽  
Marcello Restelli ◽  
Nicola Gatti

Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes of sequential decision problems in the past decades. However, non-stationary settings -- very common in real-world applications -- received little attention so far, and theoretical guarantees on the regret are known only for some frequentist algorithms. In this paper, we propose an algorithm, namely Sliding-Window Thompson Sampling (SW-TS), for nonstationary stochastic MAB settings. Our algorithm is based on Thompson Sampling and exploits a sliding-window approach to tackle, in a unified fashion, two different forms of non-stationarity studied separately so far: abruptly changing and smoothly changing. In the former, the reward distributions are constant during sequences of rounds, and their change may be arbitrary and happen at unknown rounds, while, in the latter, the reward distributions smoothly evolve over rounds according to unknown dynamics. Under mild assumptions, we provide regret upper bounds on the dynamic pseudo-regret of SW-TS for the abruptly changing environment, for the smoothly changing one, and for the setting in which both the non-stationarity forms are present. Furthermore, we empirically show that SW-TS dramatically outperforms state-of-the-art algorithms even when the forms of non-stationarity are taken separately, as previously studied in the literature.


Author(s):  
Michael Suk-Young Chwe

This chapter examines African American folktales that teach the importance of strategic thinking and argues that they informed the tactics of the 1960s civil rights movement. It analyzes a number of stories where characters who do not think strategically are mocked and punished by events while revered figures skillfully anticipate others' future actions. It starts with the tale of a new slave who asks his master why he does nothing while the slave has to work all the time, even as he demonstrates his own strategic understanding. It then considers the tale of Brer Rabbit and the Tar Baby, along with “Malitis,” which tackles the problem of how the slaves could keep the meat and eat it openly. These and other folktales teach how inferiors can exploit the cluelessness of status-obsessed superiors, a strategy that can come in handy. The chapter also discusses the real-world applications of these folktales' insights.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 407 ◽  
Author(s):  
Dominik Weikert ◽  
Sebastian Mai ◽  
Sanaz Mostaghim

In this article, we present a new algorithm called Particle Swarm Contour Search (PSCS)—a Particle Swarm Optimisation inspired algorithm to find object contours in 2D environments. Currently, most contour-finding algorithms are based on image processing and require a complete overview of the search space in which the contour is to be found. However, for real-world applications this would require a complete knowledge about the search space, which may not be always feasible or possible. The proposed algorithm removes this requirement and is only based on the local information of the particles to accurately identify a contour. Particles search for the contour of an object and then traverse alongside using their known information about positions in- and out-side of the object. Our experiments show that the proposed PSCS algorithm can deliver comparable results as the state-of-the-art.


2017 ◽  
Vol 1 (2) ◽  
pp. 76-90 ◽  
Author(s):  
Jassim Happa ◽  
Michael Goldsmith

Purpose Several attack models attempt to describe behaviours of attacks with the intent to understand and combat them better. However, all models are to some degree incomplete. They may lack insight about minor variations about attacks that are observed in the real world (but are not described in the model). This may lead to similar attacks being classified as the same type of attack, or in some cases the same instance of attack. The appropriate solution would be to modify the model or replace it entirely. However, doing so may be undesirable as the model may work well for most cases or time and resource constraints may factor in as well. This paper aims to explore the potential value of adding information about attacks and attackers to existing models. Design/methodology/approach This paper investigates used cases of minor variations in attacks and how it may and may not be appropriate to communicate subtle differences in existing attack models through the use of annotations. In particular, the authors investigate commonalities across a range of existing models and identify where and how annotations may be helpful. Findings The authors propose that nuances (of attack properties) can be appended as annotations to existing attack models. Using annotations appropriately should enable analysts and researchers to express subtle but important variations in attacks that may not fit the model currently being used. Research limitations/implications This work only demonstrated a few simple, generic examples. In the future, the authors intend to investigate how this annotation approach can be extended further. Particularly, they intend to explore how annotations can be created computationally; the authors wish to obtain feedback from security analysts through interviews, identify where potential biases may arise and identify other real-world applications. Originality/value The value of this paper is that the authors demonstrate how annotations may help analysts communicate and ask better questions during identification of unknown aspects of attacks faster,e.g. as a means of storing mental notes in a structured manner, especially while facing zero-day attacks when information is incomplete.


2008 ◽  
Vol 8 (5-6) ◽  
pp. 545-580 ◽  
Author(s):  
WOLFGANG FABER ◽  
GERALD PFEIFER ◽  
NICOLA LEONE ◽  
TINA DELL'ARMI ◽  
GIUSEPPE IELPA

AbstractDisjunctive logic programming (DLP) is a very expressive formalism. It allows for expressing every property of finite structures that is decidable in the complexity class ΣP2(=NPNP). Despite this high expressiveness, there are some simple properties, often arising in real-world applications, which cannot be encoded in a simple and natural manner. Especially properties that require the use of arithmetic operators (like sum, times, or count) on a set or multiset of elements, which satisfy some conditions, cannot be naturally expressed in classic DLP. To overcome this deficiency, we extend DLP by aggregate functions in a conservative way. In particular, we avoid the introduction of constructs with disputed semantics, by requiring aggregates to be stratified. We formally define the semantics of the extended language (called ), and illustrate how it can be profitably used for representing knowledge. Furthermore, we analyze the computational complexity of , showing that the addition of aggregates does not bring a higher cost in that respect. Finally, we provide an implementation of in DLV—a state-of-the-art DLP system—and report on experiments which confirm the usefulness of the proposed extension also for the efficiency of computation.


2018 ◽  
Author(s):  
Aditi Kathpalia ◽  
Nithin Nagaraj

Causality testing methods are being widely used in various disciplines of science. Model-free methods for causality estimation are very useful as the underlying model generating the data is often unknown. However, existing model-free measures assume separability of cause and effect at the level of individual samples of measurements and unlike model-based methods do not perform any intervention to learn causal relationships. These measures can thus only capture causality which is by the associational occurrence of ‘cause’ and ‘effect’ between well separated samples. In real-world processes, often ‘cause’ and ‘effect’ are inherently inseparable or become inseparable in the acquired measurements. We propose a novel measure that uses an adaptive interventional scheme to capture causality which is not merely associational. The scheme is based on characterizing complexities associated with the dynamical evolution of processes on short windows of measurements. The formulated measure, Compression- Complexity Causality is rigorously tested on simulated and real datasets and its performance is compared with that of existing measures such as Granger Causality and Transfer Entropy. The proposed measure is robust to presence of noise, long-term memory, filtering and decimation, low temporal resolution (including aliasing), non-uniform sampling, finite length signals and presence of common driving variables. Our measure outperforms existing state-of-the-art measures, establishing itself as an effective tool for causality testing in real world applications.


Sign in / Sign up

Export Citation Format

Share Document