Self-limiting earthquake dynamics and spatio-temporal clustering of seismicity enabled by off-fault plasticity
Earthquakes are among nature’s deadliest and costliest hazards. Understanding mechanisms for earthquake nucleation, propagation, and arrest is key for developing reliable operational forecasts and next generation seismic hazard models. While significant progress has been made in understanding source processes in linear elastic domains, the response of the rocks near the fault is complex and likely to be inelastic due to the extreme stresses and deformations associated with fault slip. The effect of this more realistic fault zone response on seismic and aseismic fault slip is poorly understood. Here, we simulate sequence of earthquake and aseismic slip of a fault embedded in an elastic-viscoplastic bulk subject to slow tectonic loading. We show that off-fault plasticity significantly influences the source characteristics. Specifically, off-fault plasticity may lead to partial ruptures and emergence of spatial segmentation as well as hierarchical temporal seismic clustering. Furthermore, co-evolution of fault slip and off-fault bulk plasticity may lead to heterogeneous rupture propagation and results in pockets of slip deficit. While the energy dissipated through plastic deformation remains a small fraction of the total energy budget, its impact on the source characteristics is disproportionally large through the redistribution of stresses and viscous relaxation. Our results suggest a new mechanism of dynamic heterogeneity in earthquake physics that can be active for both small and large earthquakes and may have important implications on earthquake size distribution and energy budget. Furthermore, this plasticity-induced self-limiting crack dynamics may be relevant for other dynamic fracture applications and design of dynamically tough materials.