scholarly journals KABOOM: An Agent-Based Model for Simulating Cognitive Sale in Team Problem Solving

2019 ◽  
Author(s):  
Christopher McComb ◽  
Kathryn Jablokow ◽  
Samuel Lapp

The performance of a design team is influenced by each team member's unique cognitive style - i.e., their preferred manner of managing structure as they solve problems, make decisions, and seek to bring about change. Cognitive style plays an important role in how teams of engineers design and collaborate, but the interactions of cognitive style with team organization and processes have not been well studied. The limitations of small-scale behavioral experiments have led researchers to develop computational models for simulating teamwork; however, none have modeled the effects of individuals' cognitive styles. This paper presents KABOOM (KAI Agent-Based Organizational Optimization Model), the first agent-based model of teamwork to incorporate cognitive style. In KABOOM, heterogeneous agents imitate the diverse problem-solving styles described by Kirton's Adaption-Innovation construct, which places each individual somewhere along the spectrum of cognitive style preference. Using the model, we investigate the interacting effects of a team's communication patterns, specialization, and cognitive style composition on design performance. By simulating cognitive style in the context of team problem solving, KABOOM lays the groundwork for the development of team simulations that reflect humans' diverse problem-solving styles.

2019 ◽  
Vol 5 ◽  
Author(s):  
Samuel Lapp ◽  
Kathryn Jablokow ◽  
Christopher McComb

The performance of a design team is influenced by each team member’s unique cognitive style – i.e., their preferred manner of managing structure as they solve problems, make decisions, and seek to bring about change. Cognitive style plays an important role in how teams of engineers design and collaborate, but the interactions of cognitive style with team organization and processes have not been well studied. The limitations of small-scale behavioral experiments have led researchers to develop computational models for simulating teamwork; however, none have modeled the effects of individuals’ cognitive styles. This paper presents the Kirton Adaption–Innovation Inventory agent-based organizational optimization model (KABOOM), the first agent-based model of teamwork to incorporate cognitive style. In KABOOM, heterogeneous agents imitate the diverse problem-solving styles described by the Kirton Adaption-Innovation construct, which places each individual somewhere along the spectrum of cognitive style preference. Using the model, we investigate the interacting effects of a team’s communication patterns, specialization, and cognitive style composition on design performance. By simulating cognitive style in the context of team problem solving, KABOOM lays the groundwork for the development of team simulations that reflect humans’ diverse problem-solving styles.


2019 ◽  
Author(s):  
Samuel Lapp

This thesis describes the development of an agent-based model for simulating cognitive style in the context of collaborative problem solving. Cognitive style describes the diverse ways in which people solve problems. Individuals’ cognitive styles can impact the success or failure of a design team. However, the effects of cognitive style in collaborative problem solving are not well understood. To address this gap, this thesis presents KABOOM (KAI Agent-Based Organizational Optimization Model), the first agent-based model of teamwork to incorporate cognitive style. In this thesis, experiments using KABOOM investigate the interacting effects of a design team’s communication patterns, specialization, and cognitive style composition on a team’s performance. Testing the model with a race car design problem reveals that teams can strategically leverage diversity of cognitive style to improve performance. By simulating cognitive style and team problem solving, KABOOM lays the groundwork for the development of team simulations that reflect humans’ diverse problem-solving styles.


Author(s):  
Samuel Lapp ◽  
Kathryn Jablokow ◽  
Christopher McComb

Abstract Collaborative problem solving can be successful or counterproductive. The performance of collaborative teams depends not only on team members’ abilities, but also on their cognitive styles. Cognitive style measures differences in problem-solving behavior: how people generate solutions, manage structure, and interact. While teamwork and problem solving have been studied separately, their interactions are less understood. This paper introduces the KAI Agent-Based Organizational Optimization Model (KABOOM), the first model to simulate cognitive style in collaborative problem solving. KABOOM simulates the performance of teams of agents with heterogeneous cognitive styles on two contextualized design problems. Results demonstrate that, depending on the problem, certain cognitive styles may be more effective than others. Also, intentionally aligning agents’ cognitive styles with their roles can improve team performance. These experiments demonstrate that KABOOM is a useful tool for studying the effects of cognitive style on collaborative problem solving.


2019 ◽  
Author(s):  
Christopher McComb ◽  
Kathryn Jablokow ◽  
Samuel Lapp

Collaborative problem solving can be successful or counterproductive. The performance of collaborative teams depends not only on team members' abilities, but also on their cognitive styles. Cognitive style measures differences in problem-solving behavior: how people generate solutions, manage structure, and interact. While teamwork and problem solving have been studied separately, their interactions are less understood. This paper introduces the KAI Agent-Based Organizational Optimization Model (KABOOM), the first model to simulate cognitive style in collaborative problem solving. KABOOM simulates the performance of teams of agents with heterogeneous cognitive styles on two contextualized design problems. Results demonstrate that, depending on the problem, certain cognitive styles may be more effective than others. Also, intentionally aligning agents' cognitive styles with their roles can improve team performance. These experiments demonstrate that KABOOM is a useful tool for studying the effects of cognitive style on collaborative problem solving.


1991 ◽  
Vol 69 (3_suppl) ◽  
pp. 1071-1074
Author(s):  
Virginia Z. Gordon

It was predicted that those participants who experienced discontinuity (death, divorce, and separations) from their parent(s) in childhood and who had successful careers in adulthood would manifest more innovative than adaptive cognitive styles on the Kirton Adaption-Innovation Inventory. The original research showed 61% of the sample members ( n = 41) experienced family discontinuity. Ninety percent ( n = 37) of the previous participants responded and showed 59% family discontinuity. Fifty-four percent in the follow-up study chose an alternative career path (counterstriving), the same percentage as in the original sample. When both family discontinuity and counterstriving were present, statistically significant innovation scores occurred. Family discontinuity in childhood and a successful career in adulthood are likely to be associated with high striving-motivation and an innovative (paradigm-breaking) problem-solving style.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Nicolò Cogno ◽  
Roman Bauer ◽  
Marco Durante

Understanding the pathophysiology of lung fibrosis is of paramount importance to elaborate targeted and effective therapies. As it onsets, the randomly accumulating extracellular matrix (ECM) breaks the symmetry of the branching lung structure. Interestingly, similar pathways have been reported for both idiopathic pulmonary fibrosis and radiation-induced lung fibrosis (RILF). Individuals suffering from the disease, the worldwide incidence of which is growing, have poor prognosis and a short mean survival time. In this context, mathematical and computational models have the potential to shed light on key underlying pathological mechanisms, shorten the time needed for clinical trials, parallelize hypotheses testing, and improve personalized drug development. Agent-based modeling (ABM) has proven to be a reliable and versatile simulation tool, whose features make it a good candidate for recapitulating emergent behaviors in heterogeneous systems, such as those found at multiple scales in the human body. In this paper, we detail the implementation of a 3D agent-based model of lung fibrosis using a novel simulation platform, namely, BioDynaMo, and prove that it can qualitatively and quantitatively reproduce published results. Furthermore, we provide additional insights on late-fibrosis patterns through ECM density distribution histograms. The model recapitulates key intercellular mechanisms, while cell numbers and types are embodied by alveolar segments that act as agents and are spatially arranged by a custom algorithm. Finally, our model may hold potential for future applications in the context of lung disorders, ranging from RILF (by implementing radiation-induced cell damage mechanisms) to COVID-19 and inflammatory diseases (such as asthma or chronic obstructive pulmonary disease).


Author(s):  
Marija Majda Perisic ◽  
Tomislav Martinec ◽  
Mario Storga ◽  
John S Gero

AbstractThis paper presents the results of computational experiments aimed at studying the effect of experience on design teams’ exploration of problem-solution space. An agent-based model of a design team was developed and its capability to match theoretically-based predictions is tested. Hypotheses that (1) experienced teams need less time to find a solution and that (2) in comparison to the inexperienced teams, experienced teams spend more time exploring the solution-space than the problem-space, were tested. The results provided support for both of the hypotheses, demonstrating the impact of learning and experience on the exploration patterns in problem and solution space, and verifying the system's capability to produce the reliable results.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Sultanah Alshammari ◽  
Armin Mikler

ObjectiveTo develop a computational model to assess the risk of epidemics in global mass gatherings and evaluate the impact of various measures of prevention and control of infectious diseases.IntroductionGlobal Mass gatherings (MGs) such as Olympic Games, FIFA World Cup, and Hajj (Muslim pilgrimage to Makkah), attract millions of people from different countries. The gathering of a large population in a proximity facilitates transmission of infectious diseases [1]. Attendees arrive from different geographical areas with diverse disease history and immune responses. The associated travel patterns with global events can contribute to a further disease spread affecting a large number of people within a short period and lead to a potential pandemic. Global MGs pose serious health threats and challenges to the hosting countries and home countries of the participants [2]. Advanced planning and disease surveillance systems are required to control health risks in these events. The success of computational models in different areas of public health and epidemiology motivates using these models in MGs to study transmission of infectious diseases and assess the risk of epidemics. Computational models enable simulation and analysis of different disease transmission scenarios in global MGs. Epidemic models can be used to evaluate the impact of various measures of prevention and control of infectious diseases.MethodsThe annual event of the Hajj is selected to illustrate the main aspects of the proposed model and to address the associated challenges. Every year, more than two million pilgrims from over 186 countries arrive in Makkah to perform Hajj with the majority arriving by air. Foreign pilgrims can stay at one of the holy cities of Makkah and Madinah up to 30-35 days prior the starting date of the Hajj. The long duration of the arrival phase of the Hajj allows a potential epidemic to proceed in the population of international pilgrims. Stochastic SEIR (Susceptible−Exposed−Infected−Recovered) agent-based model is developed to simulate the disease transmission among pilgrims. The agent-based model is used to simulate pilgrims and their interactions during the various phases of the Hajj. Each agent represents a pilgrim and maintains a record of demographic data (gender, country of origin, age), health data (infectivity, susceptibility, number of days being exposed or infected), event related data (location, arrival date and time), and precautionary or health-related behaviors.Each pilgrim can be either healthy but susceptible to a disease, exposed who are infected but cannot transmit the infection, or infectious (asymptomatic or symptomatic) who are infected and can transmit the disease to other susceptibles. Exposed individuals transfer to the infectious compartment after 1/α days, and infectious individuals will recover and gain immunity to that disease after 1/γ days. Where α is the latent period and γ is the infectious period. Moving susceptible individuals to exposed compartment depends on a successful disease transmission given a contact with an infectious individual. The disease transmission rate is determined by the contact rate and thetransmission probability per contact. Contact rate and mixing patterns are defined by probabilistic weights based on the features of infectious pilgrims and the duration and setting of the stage where contacts are taking place. The initial infections are seeded in the population using two scenarios (Figure 1) to measure the effects of changing, the timing for introducing a disease into the population and the likelihood that a particular flight will arrive with one or more infected individuals.ResultsThe results showed that the number of initial infections is influenced by increasing the value of λ and selecting starting date within peak arrival days. When starting from the first day, the average size of the initial infectious ranges from 0.05% to 1% of the total arriving pilgrims. Using the SEIR agent-based model, a simulation of the H1N1 Influenza epidemic was completed for the 35-days arrival stage of the Hajj. The epidemic is initiated with one infectious pilgrim per flight resulting in infected 0.5% of the total arriving pilgrims. As pilgrims spend few hours at the airport, the results obtained from running the epidemic model showed only new cases of susceptible individuals entering the exposed state in a range of 0.20% to 0.35% of total susceptibles. The number of new cases is reduced by almost the same rate of the number of infectious individuals following precautionary behaviors.ConclusionsA data-driven stochastic SEIR agent-based model is developed to simulate disease spread at global mass gatherings. The proposed model can provide initial indicators of infectious disease epidemic at these events and evaluate the possible effects of intervention measures and health-related behaviors. The proposed model can be generalized to model the spread of various diseases in different mass gatherings, as it allows different factors to vary and entered as parameters.References1. Memish ZA, Stephens GM, Steffen R, Ahmed QA. Emergence of medicine for mass gatherings: lessons from the Hajj. The Lancet infectious diseases. 2012 Jan 31;12(1):56-65.2. Chowell G, Nishiura H, Viboud C. Modeling rapidly disseminating infectious disease during mass gatherings. BMC medicine. 2012 Dec 7;10(1):159.


2017 ◽  
Vol 13 (1) ◽  
pp. 55-68
Author(s):  
Agung Purwanto

The objective of the research was aimed at finding out whether there is effect of the environmental education learning package and cognitive style on environmental problem solving skills. This research conducted was exsperiment methode. The target of population is the students at the Mathematics and Natural Sciences at the State University of Jakarta. Then accessible of population is Department of Chemistry and take it by randomly (n=40).The research came five conclusions are follow: the first, as a whole the ability of students problem-solving learning environment in an integrated package of environmental education is high than the monolithic environmental education learning package; the second, the ability of students problem-solving learning environment in field independent style cognitive is not high than the field dependent style cognitive; the third, interaction effect between learning and cognitive styles environmental education package; the fourth, the ability of students to solve environmental problems based on cognitive style of field dependent on an integrated learning package environmental education lower than on learning environmental education monolithic package, and the five, there is the ability of students to solve environmental problems based on field independent cognitive styles in an integrated learning package environmental education is high than on learning environmental education monolithic package.


2021 ◽  
Author(s):  
Augusto Cabrera-Becerril ◽  
Pedro Miramontes ◽  
Raúl Peralta

AbstractWe introduce an agent-based model to simulate the epidemiological dynamics of COVID-19. Most computational models proposed to study this epidemic do no take into account human mobility. We present a direct simulation model where mobility plays a key role and propose as well four quarantine strategies. The results show that the no-quarantine strategy does lead to a high peak of contagions with no rebound. Quarantined strategies, for their part, show a re-emergence of the epidemic with smaller and softer peaks.


Sign in / Sign up

Export Citation Format

Share Document