scholarly journals Heterogeneity in PFC-amygdala connectivity in middle childhood, and concurrent interrelations with inhibitory control and anxiety symptomology.

2022 ◽  
Author(s):  
Kelley Gunther ◽  
Daniel Petrie ◽  
Alaina Pearce ◽  
Bari Fuchs ◽  
Koraly Perez-Edgar ◽  
...  

The prefrontal cortex (PFC) is a key brain area in considering adaptive regulatory behaviors. This includes regulatory projections to regions of the limbic system such as the amygdala, where the nature of functional connections may confer lower risk for anxiety disorders. The PFC is also associated with behaviors like executive functioning. Inhibitory control is a behavior encompassed by executive functioning, and is generally viewed favorably for adaptive socioemotional development. Yet, some research suggests that high levels of inhibitory control may actually be a risk factor for some maladaptive developmental outcomes, like anxiety disorders. In a sample of 51 children ranging from 7-9 years old, we examined resting state functional connectivity between regions of the PFC and the amygdala. We used Subgrouping Group Iterative Multiple Model Estimation (S-GIMME) to identify and characterize data-driven subgroups of individuals with similar networks of connectivity between these brain regions. Generated subgroups were collapsed into children characterized by the presence or absence of recovered connections between the PFC and amygdala. We then tested whether inhibitory control, as measured by a stop signal task, moderated the relation between these subgroups and child-reported anxiety symptoms. We found an inverse relation between stop-signal reaction times and reported count of anxiety symptoms when controlling for connectivity group, suggesting that greater inhibitory control was actually related to greater anxiety symptoms, but only when accounting for patterns of PFC-amygdala connectivity. These data suggest that there is a great deal of heterogeneity in the nature of functional connections between the PFC and amygdala during this stage of development. The findings also provide support for the notion of high levels of inhibitory control as a risk factor for anxiety, but trait-level biopsychosocial factors may be important to consider in assessing the nature of risk.

Author(s):  
Graciela C. Alatorre-Cruz ◽  
Heather Downs ◽  
Darcy Hagood ◽  
Seth T. Sorensen ◽  
D. Keith Williams ◽  
...  

2014 ◽  
Vol 26 (8) ◽  
pp. 1601-1614 ◽  
Author(s):  
Corey N. White ◽  
Eliza Congdon ◽  
Jeanette A. Mumford ◽  
Katherine H. Karlsgodt ◽  
Fred W. Sabb ◽  
...  

The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.


2013 ◽  
Vol 25 (2) ◽  
pp. 157-174 ◽  
Author(s):  
Bram B. Zandbelt ◽  
Mirjam Bloemendaal ◽  
Janna Marie Hoogendam ◽  
René S. Kahn ◽  
Matthijs Vink

Stopping an action requires suppression of the primary motor cortex (M1). Inhibitory control over M1 relies on a network including the right inferior frontal cortex (rIFC) and the supplementary motor complex (SMC), but how these regions interact to exert inhibitory control over M1 is unknown. Specifically, the hierarchical position of the rIFC and SMC with respect to each other, the routes by which these regions control M1, and the causal involvement of these regions in proactive and reactive inhibition remain unclear. We used off-line repetitive TMS to perturb neural activity in the rIFC and SMC followed by fMRI to examine effects on activation in the networks involved in proactive and reactive inhibition, as assessed with a modified stop-signal task. We found repetitive TMS effects on reactive inhibition only. rIFC and SMC stimulation shortened the stop-signal RT (SSRT) and a shorter SSRT was associated with increased M1 deactivation. Furthermore, rIFC and SMC stimulation increased right striatal activation, implicating frontostriatal pathways in reactive inhibition. Finally, rIFC stimulation altered SMC activation, but SMC stimulation did not alter rIFC activation, indicating that rIFC lies upstream from SMC. These findings extend our knowledge about the functional organization of inhibitory control, an important component of executive functioning, showing that rIFC exerts reactive control over M1 via SMC and right striatum.


2019 ◽  
Author(s):  
Andre Chevrier ◽  
Russell J. Schachar

AbstractBackgroundAltered brain activity that has been observed in attention deficit hyperactivity disorder (ADHD) while performing cognitive control tasks like the stop signal task (SST), has generally been interpreted as reflecting either weak (under-active) or compensatory (over-active) versions of the same functions as in healthy controls. If so, then regional activities that correlate with the efficiency of inhibitory control (i.e. stop signal reaction time, SSRT) in healthy subjects should also correlate with SSRT in ADHD. Here we test the alternate hypothesis that BOLD differences might instead reflect the redirection of neural processing resources normally used for task-directed inhibitory control, toward actively managing symptomatic behavior. If so, then activities that correlate with SSRT in TD should instead correlate with inattentive and hyperactive symptoms in ADHD.MethodsWe used fMRI in 14 typically developing (TD) and 14 ADHD adolescents performing the SST, and in a replication sample of 14 healthy adults. First we identified significant group BOLD differences during all phases of activity in the SST (i.e. warning, response, reactive inhibition, error detection and post-error slowing). Next, we correlated these phases of activity with SSRT in TD, and with SSRT, inattentive and hyperactive symptom scores in ADHD. We then identified whole brain significant correlations in regions of significant group difference in activity.ResultsOnly three regions of significant group difference were correlated with SSRT in TD and replication groups (left and right inferior frontal gyri (IFG) during error detection, and hypothalamus during post-error slowing). Consistent with regions of altered activity managing symptomatic behavior instead of task-directed behavior, left IFG correlated with greater inattentive score, right IFG correlated with lower hyperactive score, and hypothalamus correlated with greater inattentive score and oppositely correlated with SSRT compared to TD.ConclusionsResults are consistent with stimuli that elicit task-directed integration of neural processing in healthy subjects, instead directing integrated function towards managing symptomatic behavior in ADHD. The ability of the current approach to determine whether altered neural activities reflect comparable functions in ADHD and control groups has broad implications for the development and monitoring of therapeutic interventions.


2018 ◽  
Author(s):  
Kenneth Javad Dale Allen ◽  
D.Phil. Jill Miranda Hooley

Negative urgency, the self-reported tendency to act impulsively when distressed, increases risk for nonsuicidal self-injury (NSSI). Prior research also suggests that NSSI is associated with impaired negative emotional response inhibition (NERI), a cognitive process theoretically related to negative urgency. Specifically, individuals with a history of NSSI had difficulty inhibiting behavioral responses to negative affective images in an Emotional Stop-Signal Task, but not to those depicting positive or neutral content. The present study sought to replicate this finding, determine whether this deficit extends to an earlier stage of NERI, and explore whether impairment in these two stages of emotional inhibitory control helps explain the relationship between negative urgency and NSSI. To address these aims, 88 adults with NSSI histories (n = 45) and healthy control participants (n = 43) without NSSI history or psychopathology completed a clinical interview, symptom inventories, an impulsivity questionnaire, and behavioral impulsivity tasks measuring early and late emotional response inhibition. The NSSI group had worse late NERI than the control group on the Emotional Stop-Signal Task, but no group differences were observed in early NERI on an Emotional Go/no-go task. However, both early and late stages of NERI accounted for independent variance in negative urgency. We additionally found that late NERI explained variance in the association between negative urgency and NSSI. These results suggest that impulsive behavior in NSSI may involve specifically impaired inhibitory control over negative emotional impulses during late response inhibition, and that this cognitive deficit might reflect one mechanism or pathway to elevated negative urgency among people who self-injure.


2020 ◽  
Vol 1731 ◽  
pp. 146222 ◽  
Author(s):  
Joost Wiskerke ◽  
Morgan H. James ◽  
Gary Aston-Jones

Author(s):  
Irene Rincón-Pérez ◽  
Alberto J. Sánchez-Carmona ◽  
Susana Arroyo-Lozano ◽  
Carlos García-Rubio ◽  
José Antonio Hinojosa ◽  
...  

The main aim of this study was to investigate the development of selective inhibitory control in middle childhood, a critical period for the maturation of inhibition-related processes. To this end, 64 children aged 6–7 and 56 children aged 10–11 performed a stimulus-selective stop-signal task, which allowed us to estimate not only the efficiency of response inhibition (the stop-signal reaction time or SSRT), but also the strategy adopted by participants to achieve task demands. We found that the adoption of a non-selective (global) strategy characterized by stopping indiscriminately to all stimuli decreased in older children, so that most of them were able to interrupt their ongoing responses selectively at the end of middle childhood. Moreover, compared to younger children, older children were more efficient in their ability to cancel an initiated response (indexed by a shorter SSRT), regardless of which strategy they used. Additionally, we found improvements in other forms of impulsivity, such as the control of premature responding (waiting impulsivity), and attentional-related processes, such as intra-individual variability and distractibility. The present results suggest that middle childhood represents a milestone in the development of crucial aspects of inhibitory control, including selective stopping.


Sign in / Sign up

Export Citation Format

Share Document