scholarly journals Utilization of Charred Water Hyacinth (Jalkumvi) as Biosorbent for Removal of Ca(II) Ion from Aqueous Solution

2021 ◽  
Vol 42 (1) ◽  
pp. 107-114
Author(s):  
Arun Bhujel ◽  
Krishna Wagle ◽  
Bishow Regmi ◽  
Bibek Sapkota ◽  
Bhoj Raj Poudel ◽  
...  

A promising adsorbent, charred water hyacinth (CWH) for the removal of Ca(II) from the aqueous solution was explored by heat treatment of water hyacinth followed by chemical activation with acidified zinc chloride (ZnCl2). The adsorbent was characterized using scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) spectroscopy. Batch adsorption techniques were conducted for Ca(II) adsorption to assess the adsorption isotherm, effect of pH, contact time, initial Ca(II) concentration, adsorbent doses, and adsorption kinetics. The SEM micrograph illustrates the rough and irregular surface morphology and EDX spectra confirm the successful adsorption of Ca(II) on the adsorbent surface. The equilibrium adsorption data better fitted to the Freundlich isotherm model having a maximum adsorption capacity (qmax) of 319.75 mg/g. The highest percentage of adsorption was found at pH 1.5. The adsorption of Ca(II) by CWH decreased at the higher metal concentration and lower adsorbent doses. The adsorption of Ca(II) ions onto CWH followed the pseudo-second-order kinetics model. . Overall, these results suggested that the as-prepared CWH can be used as an eco-friendly, economical and efficient alternative for the removal of Ca(II)  from the aqueous solution.

2008 ◽  
Vol 10 (2) ◽  
pp. 43-49 ◽  
Author(s):  
Mohammed Uddin ◽  
Mohammed Islam ◽  
Mohammed Islam ◽  
Mohammed Abedin

Uptake of phenol from aqueous solution by burned water hyacinth The potential of burned water hyacinth (BWH) for phenol adsorption from aqueous solution was studied. Batch kinetic and isotherm studies were carried out under varying experimental conditions of contact time, phenol concentration, adsorbent dosage and pH. The pH at the point of zero charge (pHPZC) of the adsorbent was determined by the titration method and the value of 8.8 ± 0.2 was obtained. The FTIR of the adsorbent was carried out in order to find the potential adsorption sites for the interaction with phenol molecules. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and it was found that the experimental data fitted very well to the Langmuir model. Maximum adsorption capacity of the adsorbent was found to be 30.49 mg/g. Batch adsorption models, based on the assumption of the pseudo-first-order and pseudo-second-order models, were applied to examine the kinetics of the adsorption. The results showed that kinetic data closely followed the pseudo-second-order model.


Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


2012 ◽  
Vol 518-523 ◽  
pp. 369-375 ◽  
Author(s):  
Yue Hong Yang ◽  
Dun Tao Shu ◽  
Ting Dong Fu ◽  
Huai Yu Zhang

The purpose of this study was to investigate the adsorption of Cu(II) on phosphogypsum, a waste material from the manufacture of phosphoric acid by wet process. The removal capacity of phosphogypsum for Cu(II) ions was studied as a function of solution pH, contact time, adsorbent dosage and adsorbate concentration. Before batch adsorption study, phosphogypsum was pre-conditioned by calcine without water. The Langmuir and Freundlich theories were used to describe the Cu(II) adsorption process, and the Freundlich isotherm showed the best fit to the process. The adsorptions of Cu(II) followed pseudo-second-order kinetics. Maximum adsorption capacity of lime-preconditioned phosphogypsum was found to be 2.824 mg/g. The results showed that the phoshogypsum is a suitable adsorbent for the removal of Cu(II) ions from aqueous solutions.


2013 ◽  
Vol 28 (1-2) ◽  
pp. 113-122
Author(s):  
Kedar Nath Ghimire ◽  
Deepak Wagle ◽  
Suman Lal Shrestha

An effective chemically modified adsorbent based on sugarcane waste has been prepared by treating with concentrated sulphuric acid in 2:1weight/volume ratio. Thus prepared adsorbent has been found to be effective in the adsorption of chromium from aqueous medium. The efficacy of the adsorbent in the removal of chromium was evaluated by batch adsorption method. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was found to be 195 mg/g at their optimal pH 1 at which unmodified bagasse has only 58 mg/g. The characterization of adsorbent was done by determining surface area and Boehm’s titration method. Freundlich isotherm and pseudo-second order kinetic model gave better explanation of the adsorption process.


2019 ◽  
Vol 32 (2) ◽  
pp. 311-316
Author(s):  
Rino Laly Jose ◽  
M.G. Gigimol ◽  
Beena Mathew

N,N-Methylene bis-acrylamide crosslinked poly-N-vinyl pyrrolidone hydrogels were synthesized and binding of the hydrogel with the dye solution was followed spectrophotometrically. The chemical structure and morphology of the hydrogel before and after adsorption of acid black 194 was confirmed by FT-IR and SEM. Effect of various physico-chemical parameters such as concentration, temperature, pH, time and the amount of hydrogel used were investigated by batch adsorption studies. Hydrogel used as adsorbent in this study was characterized by UV-Vis spectrophotometer before and after adsorption of acid black 194. Kinetic studies suggested pseudo second order reaction. Langmuir and Freundlich isotherms were applied on equilibrium adsorption data and found that Freundlich isotherm fit better for the present investigation. N,N-methylene bisacrylamide crosslinked poly-N-vinyl pyrrolidone hydrogel displayed excellent properties for the removal of the azo dye, acid black 194 from aqueous solution.


2013 ◽  
Vol 29 ◽  
pp. 34-43
Author(s):  
Puspa Lal Homagai

Cellulose, hemicelluloses and lignin are the main constituents found in sugarcane (Saccharum officinarum) bagasse having many surface active sites containing hydroxyl and/or phenolic groups which are effective for chemical modification. The biowaste was first charred with concentrated sulphuric acid and then the charred aminated sugarcane bagasse (CASB) was prepared by reduction followed by oxidation. The developed bio-sorbent was characterized by SEM, TGA/DTA, FTIR and elemental analysis. Batch adsorption methods were carried out to determine Pb+2 sorption capacities at different pH ranges and sorbate concentrations. The maximum adsorption capacity for Pb+2 was found to be 323 mg g-1 with an efficiency of 98% at pH 4.The experimental data showed a good fit to Langmuir isotherm as compared to Freundlich isotherm models. The kinetics was best fitted with the pseudo-second order model. The adsorption equilibrium was attained within 20 min. The high adsorption capacity and fast kinetics results of the charred aminated sugarcane bagasse indicated that it might be potential adsorbent for the removal of lead from contaminated water. DOI: http://dx.doi.org/10.3126/jncs.v29i0.9235Journal of Nepal Chemical SocietyVol. 29, 2012Page: 34-43Uploaded date : 12/3/2013


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Swarup Biswas ◽  
Umesh Mishra

Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.


2021 ◽  
Vol 9 (11) ◽  
pp. 62-72
Author(s):  
Akissi Lydie Chantal Koffi ◽  
◽  
Djamatche Paul Valery Akesse ◽  
Herman Yapi Yapo ◽  
David Leonce Kouadio ◽  
...  

The aim of this research is to investigate the feasibility of using activated carbon from cocoa pod shells, waste from agriculture to adsorb methylene blue from aqueous solutions through batch tests. Various physiochemical parameters such as, contact time, initial dye concentration, adsorbent dosage, pH of dye solution and temperature were investigated in a batch-adsorption technique. The process followed the pseudo-second order kinetics model which showed chemical adsorption. Langmuir and Freundlich isotherm models were used to determine adsorption constants. The maximum adsorption capacity at 30°C is 526.31 mg/g. Thermodynamic parameters such as enthalpy change (∆Hº), free energy change (∆Gº) and entropy change (∆Sº) were studied, and the adsorption process of BM was found to be exothermic and spontaneous.


2018 ◽  
Vol 14 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Mohd Sukri Hassan ◽  
Khairul Adli Nikman ◽  
Fisal Ahmad

Chemical activation process was applied to prepare a cocoa nib-based activated carbon using potassium carbonate (K2CO3). The performance of the activated carbon in removing Methylene Blue from aqueous solution was investigated by batch adsorption studies. The adsorptive properties were studied in terms of initial concentration (C0: 100-300 mg/L) and contact time effects. The experimental isotherm data fitted well the Langmuir and Temkin models. The adsorption kinetic followed the pseudo-second-order model and Boyd model explained the mechanism of adsorption. The results indicate that the chemically produced activated cocoa nib carbon has significant potential to be used as an adsorbent material for adsorption of Methylene Blue from aqueous solution.


2020 ◽  
Vol 26 (4) ◽  
pp. 200241-0
Author(s):  
Naincy Sahu ◽  
Chandra Bhan ◽  
Jiwan Singh

The present study investigated the adsorption efficiency of magnetic activated carbon was synthesized by waste biomass of Pisum sativum (peel) and pyrolysis at 500˚C temperature (MPPAC-500). Derived activated carbon was applied for removal of fluoride from aqueous solution. The MPPAC-500 was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), zeta potential, X-ray Diffraction (XRD) and Particle Size Analyser. The fluoride sequestration study was performed in both batch and column systems. The batch adsorption study was focused on parameter like, adsorbent dose, contact time, pH and initial fluoride concentrations. The maximum capacity of fluoride removal was qo = 4.71 (mg/g). Freundlich isotherm model (R2 -0.995) obeyed better than Langmuir (R<sup>2</sup> -0.979) model. The RL values observed between 0-1 (RL-0.057) inferred the favourable adsorption. Pseudo-second-order model favoured well than pseudo-first-order in the whole experimental data. In case of column study was performed at two different bed height 5 cm and 10 cm having flow rate of 5 mL/min as well as 10 mL/min. The breakthrough curve and column data were interpreted by Thomas, Adams-Bohart, Yoon-Nelson and Clark model. These finding showed that MPPAC-500 has potential adsorptive capacity for fluoride removal from aqueous solutions in batch and column systems.


Sign in / Sign up

Export Citation Format

Share Document