scholarly journals Deciphering molecular mechanisms that regulate programmed cell death of primordial germ cells in Drosophila melanogaster

2007 ◽  
Author(s):  
Yukiko Yamada
2015 ◽  
Vol 59 (1-2-3) ◽  
pp. 41-49 ◽  
Author(s):  
Massimo De Felici ◽  
Francesca G. Klinger

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Na Jiang ◽  
Xiaoyu Zhang ◽  
Xuejun Gu ◽  
Xiaozhuang Li ◽  
Lei Shang

AbstractLong non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but not translated into proteins. LncRNAs regulate gene expressions at multiple levels, such as chromatin, transcription, and post-transcription. Further, lncRNAs participate in various biological processes such as cell differentiation, cell cycle regulation, and maintenance of stem cell pluripotency. We have previously reported that lncRNAs are closely related to programmed cell death (PCD), which includes apoptosis, autophagy, necroptosis, and ferroptosis. Overexpression of lncRNA can suppress the extrinsic apoptosis pathway by downregulating of membrane receptors and protect tumor cells by inhibiting the expression of necroptosis-related proteins. Some lncRNAs can also act as competitive endogenous RNA to prevent oxidation, thereby inhibiting ferroptosis, while some are known to activate autophagy. The relationship between lncRNA and PCD has promising implications in clinical research, and reports have highlighted this relationship in various cancers such as non-small cell lung cancer and gastric cancer. This review systematically summarizes the advances in the understanding of the molecular mechanisms through which lncRNAs impact PCD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lama Tarayrah-Ibraheim ◽  
Elital Chass Maurice ◽  
Guy Hadary ◽  
Sharon Ben-Hur ◽  
Alina Kolpakova ◽  
...  

AbstractDuring Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.


2006 ◽  
Vol 5 (2) ◽  
pp. 23-34
Author(s):  
V. V. Novitsky ◽  
N. V. Ryazantseva ◽  
O. B. Zhoukova

The review analyses information from recent literature and results of the authors’ own investigations concerning imbalance of programmed cell death in forming chronic viral infection. Molecular mechanisms of apoptosis modulation of immune cells by persistent viruses are discussed in the article.


Sign in / Sign up

Export Citation Format

Share Document