scholarly journals Enhancement of Solubility and Improvement of Dissolution Rate of Atorvastatin Calcium Prepared as Nanosuspension

Author(s):  
Ahmed H. Ali ◽  
Shaimaa N. Abd-Alhammid

       Atorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.         Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication. In this study five types of stabilizers (TPGS, PVP K30, HPMC E5, HPMC E15, and Tween80) were used in three different concentrations 1:1, 1:0.75 and 1:0.5 for preparing of formulations. At the same time, tween80 and sodium lauryl sulphate have been added as a co-stabilizer.          Atorvastatin nano-suspensions were evaluated for particle size, PDI, zeta potential, crystal form and surface morphology. Finally, results of particle size analysis revealed reduced nano-particulate size to 81nm for optimized formula F18 with the enhancement of in-vitro dissolution profile up to 90% compared to 44% percentage cumulative release for the reference Atorvastatin calcium powder in 6.8 phosphate buffer media. Furthermore, saturation solubility of freeze dried Nano suspension showed 3.3, 3.8, and 3.7 folds increments in distilled water, 0.1N Hcl and 6.8 phosphate buffers, respectively. Later, freeze dried powder formulated as hard gelatin capsules and evaluated according to the USP specifications of the drug content and the disintegration time.        As a conclusion; formulation of poorly water soluble Atorvastatin calcium as nano suspension significantly improved the dissolution of the drug and enhances its solubility.

2017 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Vaishali Kilor ◽  
Nidhi Sapkal ◽  
Anwar Daud ◽  
Shruti Humne ◽  
Tushar Gupta

Objective: In the present work attempt has been made to stabilize optimized nanosuspensions of glimepiride by solidification using a novel Oral Thin Film (OTF) formulation.Methods: Nanosuspensions were characterized for particle size, zeta potential as well as in vitro dissolution profile. As nanosuspensions are prone to destabilization by Ostwald’s ripening or agglomeration/aggregation, OTF formulation as a novel approach for stabilization through solidification of optimized nanosuspension was attempted. OTF formulation method is a simple, easy and scalable method for the preparation of solid oral dosage form. Prepared formulations were evaluated for physicochemical parameters like folding endurance, disintegration time, tensile strength, in vitro drug release, in vivo bioavailability and stability.Results: The mean particle size of the nanoparticles in OTF was found to be 57.2 nm. It was observed from the results of in vivo bioavailability studies that high plasma drug concentrations(Cmax) were achieved for nanosuspension loaded OTF (NSOTF) i.e. 4900 ng/ml as compared to marketed oral formulation (Cmax-2900 ng/ml). Results of the stability studies indicated that nanosize of the particles was retained even after 3 mo of the study.Conclusion: Therefore it can be concluded that OTF formulation has a potential for stabilization of nanosuspensions.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


2021 ◽  
Vol 15 (5) ◽  
pp. 8-12
Author(s):  
Kajal Tomer ◽  
Dilip Kumar Gupta

The drug can be released in a controlled manner using a gastro retentive dosage type. The main focus on the novel technological advances in the floating drug delivery method for gastric retention. The preparation of diacerein micro balloon is done by solvent diffusion method, using acrylic polymer like Eudragit S 100 and HPMC K4 M. The various evaluation of the prepared floating microsphere like its % yield, drug entrapment efficiency, particle size in-vitro dissolution, buoyancy, was studied. The floating microsphere was found to be spherical and range from 85 μm - 192 μm. Whereas the buoyancy in gastric mucosa between the range 30.5% -49.5%. The % yield and % entrapment efficiency were found under the range 61% - 82% and 45.1–84.1% respectively. The microsphere showed favorable in-vitro dissolution 76.8 to 94.45. The optimized formulation was found based on evaluation of floating micro-balloons, Formulation (M3E3) showed the best result as particle size 192 μm, DDE 84.1%, in vitro drug release 94.5%, and in vitro buoyancy 49.5%. all the formulations showed controlled release up to 24 hours.


Author(s):  
Madhabi Lata Shuma ◽  
Shimul Halder

The objective of the present study was to compare the in vitro equivalence of different orally disintegrating tablets (ODT) of Desloratadine (DES) available in Bangladesh pharmaceutical market with the reference brand. The in vitro dissolution study was carried out using the United States Pharmacopoeia (USP) paddle method and a comparative study were also carried out with the reference brand. Other pharmacopoeial and non-pharmacopoeial quality assessment parameters including hardness, friability, water absorption ratio, and disintegration time etc. were also evaluated. From the results of the dissolution profile of the commercially available products, it found majority of the products didn’t exhibited compendial requirements in dissolution behavior to the reference brand with model-independent approach ( f2 > 50, f1 < 15) and showed statistically significant differences. Additionally, the data of different physical quality parameters revealed that all commercial products complied with the official specifications. From these findings, it could be suggested that the DES-ODT formulations’ available in the Bangladesh market could be prescribed; however additional experiments might require to clarify the interchangeability among the products.


Author(s):  
Rusul M. Alwan ◽  
Nawal A. Rajab

Selexipag is an orally selective long-acting prostacyclin receptor agonist, which indicated for the treatment of pulmonary arterial hypertension. It is practically insoluble in water ( class II, according to BCS). This work aims to prepare and optimized Selexipag nanosuspensions to achieve an enhancement in the in vitro dissolution rate. The solvent antisolvent precipitation method was used for the production of nanosuspension, and the effect of formulation parameters (stabilizer type, drug: stabilizer ratio, and use of co-stabilizer) and process parameter (stirring speed) on the particle size and polydispersity index were studied. SLPNS prepared with Soluplus® as amain stabilizer (F15) showed the smallest particle size 47nm with PDI and Zeta potential value of 0.073 and -47mV, respectively. SLPNS exhibited an increase in the dissolution rate in phosphate buffer pH 6.8 (100% drug release during 60 min) compared to the pure drug ( 40% during the same time). This result indicates that SLPNS is an efficient way of improving the dissolution rate.  


Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


2020 ◽  
Vol 13 (5) ◽  
pp. 100
Author(s):  
Blasco Alejandro ◽  
Torrado Guillermo ◽  
Peña M Ángeles

This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to diverse kinds of hostile environments. Optimized orally disintegrating tablets were prepared by the direct compression method from galenic development to the industrial scale technique, thanks to strategic and support actions between the Spanish Army Force Lab and the Department of Biomedical Sciences (UAH). The results show that loperamide HCl ODT offers a rapid beginning of action and improvement in the bioavailability of poorly absorbed drugs. The manufactured ODTs complied with the pharmacopeia guidelines regarding hardness, weight variation, thickness, friability, drug content, wetting time, percentage of water absorption, disintegration time, and in vitro dissolution profile. Drug compatibility with excipients was checked by DSC, FTIR, and SEM studies.


2020 ◽  
Vol 10 (4) ◽  
pp. 391-404
Author(s):  
Riyaz Momin ◽  
Harshita Gupta ◽  
Rutu Panchal ◽  
Priti J. Mehta

Background/Objectives: There are numerous unavoidable hurdles encountered by scientists to achieve an ideal drug delivery. Among them, the high-water solubility of a therapeutic molecule has been observed as a chief pausing factor that diminishes the biological stay and shortens the half-life of a drug. The ramification of this occurs that patients have to take medications multiple times in a single day to maintain the drug-plasma concentration. These consequences lead to poor pharmacological responses and ultimately do not add any significant outcomes in the betterment of patient’s health. A similar phenomenon has been observed with the delivery of some potent Anti-Parkinson’s medications, for instance, Pramipexole. The current research is aimed at developing the biological residue of Pramipexole Hydrochloride (PRP) based on the counter ion technology that has provided a sojourn release of PRP by retarding the aqueous solubility, which is further characterized using the dissolution study. Materials & Methods: Initially, the molar ratio of PRP and the selected counter ion, i.e., Disodium Pamoate (NaPAM), was quantified to produce the stable salt. Thereafter, the salt formation was preceded by the precipitation method and this primarily obtained salt is called microcrystals. In the next stage, the microcrystals were characterized by numerous analytical tools such as Differential Scanning Calorimetry (DSC), melting point, and Mass Spectrometry (MS). On the other hand, Ultraviolet Spectroscopy (UV) was used for the simultaneous determination of PRP and NaPAM in the formed salt. After this, the development of nanocrystals from microcrystals was carried out using high-shear homogenization (HSH) with the aid of α-Tocopherol Polyethylene Glycol 1000 Succinate (TPGS), employed as a stabilizer. The preceding step was performed by analyzing the particle size. Following this, an in vitro dissolution study was planned using a dialysis bag system (at 6.8 pH buffer) along with vehicle development and characterization being taken into consideration. Results: An equimolar ratio (1:1) of PRP and counter ion stipulated the complete reaction occurred among them and then considering this ratio (based on the percent loading efficiency (%LE) and complexation efficiency) (%CE), salt preparation was done. Upon analysis of the developed salt (microcrystal), satisfactory outcomes have assured the complete and compatible salt formation. Besides it, simultaneous estimation certified that the presence of PRP and NaPAM in the formulation does not affect each other, qualitatively and quantitatively. Apart from that, the particle size of these nanocrystals was also found in the acceptable range. Furthermore, Pramipexole Pamoate Nanocrystals Salt (PPNS) was formulated, and in vitro dissolution study showed that PPNS was significantly able to extend the release (93.87 % release, i.e., sustainable) up to 48 hours as compared to the standard PRP. Additionally, the developed vehicle was found suitable and stable, both at room temperature and stress conditions. Conclusion: To sum up, the data gathered here expressed promising results and rendered an insight that PPNS might be a good option (if clinically proven safe and efficacious) in the nearest future to enhance patient compliance by minimizing the daily demand of PRP for Parkinson's patients. According to our knowledge, we are the first ones reporting depot formulation employing nanoconcepts for the cure of Parkinson’s. However, in vivo animal model studies along with pharmacokinetic data, must be designed to establish the safety and efficiency of PPNS.


Author(s):  
Amruta Papdiwal ◽  
Kishor Sagar ◽  
Vishal Pande

Poor water solubility and slow dissolution rate are major issues for the majority of upcoming and existing biologically active pharmaceutical compounds. Nateglinide is Biopharmaceutical Classification System Class-II drug that has low solubility and high permeability. The purpose of the present study was to improve the solubility and dissolution rate of Nateglinide by the preparation of nanosuspension by the nanoprecipitation technique. Nateglinide nanosuspension was evaluated for its particle size, in vitro dissolution study, and characterized by differential scanning calorimetry and scanning electron microscopy. The optimized formulation showed an average particle size of 207 nm and zeta potential of -25.8 mV. The rate of dissolution of the optimized nanosuspension was enhanced by 83% in 50 min relative to micronized suspension of nateglinide (37% in 50 min). This improvement was mainly due to the formulation of nanosized particles of Nateglinide. Stability study revealed that nanosuspension was more stable at room temperature and refrigerator condition with no significant change in particle size distribution. These results indicate that the nateglinide loaded nanosuspension may significantly improve in vitro dissolution rate and thereby possibly enhance the onset of therapeutic effect.


Sign in / Sign up

Export Citation Format

Share Document