In-Situ Use of an Optical Microscope for FIB Microsurgery of Planarized Devices

Author(s):  
Patrick J. Wolpert ◽  
Raymond A. Lee

Abstract The extensive use of planarization in many of today's leading process technologies significantly reduces the effectiveness of FIB circuit modification and debugging. Planarization has played a significant role in the development of denser chips with increasingly smaller geometries. Fully planarized devices offer little or no surface features on which the FIB operator relies for orientation and alignment. These conditions lead to increased debug cycle times and decreased success rates using the FIB. Recent FIB tool advancements in the field of C4 (controlled-collapse chip connection) flip-chip packaged device modification and debug have also made it easier to work on highly planarized conventional wire-bond technology. The integration of an optical microscope with an infrared camera into the work chamber allows the operator to view the circuitry under the surface layer. This paper will offer several techniques for overcoming the challenges that planarized devices present by using this in-situ optical microscope. When properly implemented, these techniques can significantly improve the success rate and throughput time of device modification on highly planarized parts.

Author(s):  
Ashwin Salvi ◽  
John Hoard ◽  
Mitchell Bieniek ◽  
Mehdi Abarham ◽  
Dan Styles ◽  
...  

The implementation of exhaust gas recirculation (EGR) coolers has recently been a widespread methodology for engine in-cylinder NOX reduction. A common problem with the use of EGR coolers is the tendency for a deposit, or fouling layer to form through thermophoresis. These deposit layers consist of soot and volatiles and reduce the effectiveness of heat exchangers at decreasing exhaust gas outlet temperatures, subsequently increasing engine out NOX emission. This paper presents results from a novel visualization rig that allows for the development of a deposit layer while providing optical and infrared access. A 24-hour, 379 micron thick deposit layer was developed and characterized with an optical microscope, an infrared camera, and a thermogravimetric analyzer. The in-situ thermal conductivity of the deposit layer was calculated to be 0.047 W/mK. Volatiles from the layer were then evaporated off and the layer reanalyzed. Results suggest that volatile bake-out can significantly alter the thermo-physical properties of the deposit layer and hypotheses are presented as to how.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1557
Author(s):  
Carlos Delgado ◽  
Wil Van Cleve ◽  
Christopher Kent ◽  
Emily Dinges ◽  
Laurent A. Bollag

Background: Use of an in situ epidural catheter has been suggested to be efficient to provide anesthesia for postpartum tubal ligation (PPTL). Reported epidural reactivation success rates vary from 74% to 92%. Predictors for reactivation failure include poor patient satisfaction with labor analgesia, increased delivery-to-reactivation time and the need for top-ups during labor. Some have suggested that this high failure rate precludes leaving the catheter in situ after delivery for subsequent reactivation attempts. In this study, we sought to evaluate the success rate of neuraxial techniques for PPTL and to determine if predictors of failure can be identified. Methods: After obtaining IRB approval, a retrospective chart review of patients undergoing PPTL after vaginal delivery from July 2010 to July 2016 was conducted using CPT codes, yielding 93 records for analysis. Demographic, obstetric and anesthetic data (labor analgesia administration, length of epidural catheter in epidural space, top-up requirements, time of catheter reactivation, final anesthetic technique and corresponding doses for spinal and epidural anesthesia) were obtained. Results: A total of 70 patients received labor neuraxial analgesia. Reactivation was attempted in 33 with a success rate of 66.7%. Patient height, epidural volume of local anesthetic and administered fentanyl dose were lower in the group that failed reactivation. Overall, spinal anesthesia was performed in 60 patients, with a success rate of 80%. Conclusions: Our observed rate of successful postpartum epidural reactivation for tubal ligation was lower than the range reported in the literature. Our success rates for both spinal anesthesia and epidural reactivation for PPTL were lower than the generally accepted rates of successful epidural and spinal anesthesia for cesarean delivery. This gap may reflect a lower level of motivation on behalf of both the patients and anesthesia providers to tolerate “imperfect” neuraxial anesthesia once fetal considerations are removed.


Author(s):  
Ashwin Salvi ◽  
John Hoard ◽  
Mitchell Bieniek ◽  
Mehdi Abarham ◽  
Dan Styles ◽  
...  

The implementation of exhaust gas recirculation (EGR) coolers has recently been a widespread methodology for engine in-cylinder NOx reduction. A common problem with the use of EGR coolers is the tendency for a deposit, or fouling layer to form through thermophoresis. These deposit layers consist of soot and volatiles and reduce the effectiveness of heat exchangers at decreasing exhaust gas outlet temperatures, subsequently increasing engine out NOx emission. This paper presents results from a novel visualization rig that allows for the development of a deposit layer while providing optical and infrared access. A 24 h, 379-micron-thick deposit layer was developed and characterized with an optical microscope, an infrared camera, and a thermogravimetric analyzer. The in situ thermal conductivity of the deposit layer was calculated to be 0.047 W/mK. Volatiles from the layer were then evaporated off and the layer reanalyzed. Results suggest that the removal of volatile components affect the thermophysical properties of the deposit. Hypotheses supporting these results are presented.


Fachsprache ◽  
2017 ◽  
Vol 32 (3-4) ◽  
pp. 100-121
Author(s):  
Friederike Prassl

This article focuses on the decision-making processes involved in research and knowledge integration in translation processes. First, the relevance of decision taking intranslation is discussed. Second, the psychology of decision making as seen by Jungermann et al. (2005) is introduced, who propose a categorization of decision-making processes intofour types: “routinized”, “stereotype”, “reflected” and “constructed”. This classification is then applied to the translations by five professional translators and five novices of five segments occurring in a popular-science text. The analysis reveals that the decision-making types are distributed differently among students and professional translators, which also has to be seen against the background of whether the decisions made were successful or not. The preliminary results of this study show that students resort to reflected decisions in most cases, but with a low success rate. Professionals achieve a higher success rate when making reflected decisions. As expected, they also make more routinized decisions than students. The professionals’ success rates improve with increasing cognitive involvement, while their failure rates are relatively high when making routinized decisions, an aspect worthwhile considering in translation didactics.


Author(s):  
J. Gaudestad ◽  
F. Rusli ◽  
A. Orozco ◽  
M.C. Pun

Abstract A Flip Chip sample failed short between power and ground. The reference unit had 418Ω and the failed unit with the short had 16.4Ω. Multiple fault isolation techniques were used in an attempt to find the failure with thermal imaging and Magnetic Current Imaging being the only techniques capable of localizing the defect. To physically verify the defect location, the die was detached from the substrate and a die cracked was seen using a visible optical microscope.


2020 ◽  
Author(s):  
Simone Zen ◽  
Jan C. Thomas ◽  
Eric V. Mueller ◽  
Bhisham Dhurandher ◽  
Michael Gallagher ◽  
...  

AbstractA new instrument to quantify firebrand dynamics during fires with particular focus on those associated with the Wildland-Urban Interface (WUI) has been developed. During WUI fires, firebrands can ignite spot fires, which can rapidly increase the rate of spread (ROS) of the fire, provide a mechanism by which the fire can pass over firebreaks and are the leading cause of structure ignitions. Despite this key role in driving wildfire dynamics and hazards, difficulties in collecting firebrands in the field and preserving their physical condition (e.g. dimensions and temperature) have limited the development of knowledge of firebrand dynamics. In this work we present a new, field-deployable diagnostic tool, an emberometer, designed to provide measurement of firebrand fluxes and information on both the geometry and the thermal conditions of firebrands immediately before deposition by combining a visual and infrared camera. A series of laboratory experiments were conducted to calibrate and validate the developed imaging techniques. The emberometer was then deployed in the field to explore firebrand fluxes and particle conditions for a range of fire intensities in natural pine forest environments. In addition to firebrand particle characterization, field observations with the emberometer enabled detailed time history of deposition (i.e. firebrand flux) relative to concurrent in situ fire behaviour observations. We highlight that deposition was characterised by intense, short duration “showers” that can be reasonably associated to spikes in the average fire line intensity. The results presented illustrate the potential use of an emberometer in studying firebrand and spot fire dynamics.


2021 ◽  
Vol 10 (12) ◽  
pp. 2595
Author(s):  
Ryo Karakawa ◽  
Hidehiko Yoshimatsu ◽  
Keisuke Kamiya ◽  
Yuma Fuse ◽  
Tomoyuki Yano

Background: Lymphaticovenular anastomosis (LVA) is a challenging procedure and requires a sophisticated supermicrosurgical technique. The aim of this study was to evaluate and establish a discrete supermicrosurgical anastomosis method using the “suture-stent technique”. Methods: Forty-eight LVA sites of twenty patients with lower extremity lymphedema who had undergone LVA between July 2020 and January 2021 were included in this study. LVA was performed with the conventional technique or with the suture-stent technique. The patency of the anastomoses was evaluated using an infrared camera system intraoperatively. The success rate on the first try and the final success rate for each group were compared. Results: After full application of the exclusion criteria, 35 LVAs of 16 patients including 20 limbs were included in the analysis. The ratio of good patency findings after anastomosis in the suture-stent technique group was 100%. The incidences of leakage or occlusion on the first try were statistically greater in the conventional technique group (29.4%) than in the suture-stent technique group (0%) (p = 0.0191). All anastomoses achieved good patency in the final results. Conclusion: With its minimal risk of catching the back wall during the anastomosis, the suture-stent technique can be considered an optimal anastomosis option for LVA.


2021 ◽  
Vol 6 ◽  
pp. 100138
Author(s):  
Mikihiro Kato ◽  
Sujun Guan ◽  
Xinwei Zhao

Sign in / Sign up

Export Citation Format

Share Document