Finite-Element Modeling and Quantitative Measurement Using Scanning Microwave Microscopy to Characterize Dielectric Films

Author(s):  
K. A. Rubin ◽  
W. Jolley ◽  
Y. Yang

Abstract Scanning Microwave Impedance Microscopy (sMIM) can be used to characterize dielectric thin films and to quantitatively discern film thickness differences. FEM modeling of the sMIM response provides understanding of how to connect the measured sMIM signals to the underlying properties of the dielectric film and its substrate. Modeling shows that sMIM can be used to characterize a range of dielectric film thicknesses spanning both low-k and medium-k dielectric constants. A model system consisting of SiO2 thin films of various thickness on silicon substrates is used to illustrate the technique experimentally.

2010 ◽  
Vol 1253 ◽  
Author(s):  
Sharath Sriram ◽  
Madhu Bhaskaran ◽  
Arnan Mitchell

AbstractA self-assembly driven process to synthesize island-structured dielectric films is presented. An intermetallic reaction in platinized silicon substrates provides preferential growth sites for the complex oxide dielectric (strontium-doped lead zirconate titanate) layer. Microscopy and spectroscopy analyses have been used to propose a mechanism for this structuring process. This provides a simple and scalable process to synthesize films with increased surface area for sensors, especially those materials with a complex chemistry.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 820
Author(s):  
François Piquemal ◽  
José Morán-Meza ◽  
Alexandra Delvallée ◽  
Damien Richert ◽  
Khaled Kaja

Reference samples are commonly used for the calibration and quantification of nanoscale electrical measurements of capacitances and dielectric constants in scanning microwave microscopy (SMM) and similar techniques. However, the traceability of these calibration samples is not established. In this work, we present a detailed investigation of most possible error sources that affect the uncertainty of capacitance measurements on the reference calibration samples. We establish a comprehensive uncertainty budget leading to a combined uncertainty of 3% in relative value (uncertainty given at one standard deviation) for capacitances ranging from 0.2 fF to 10 fF. This uncertainty level can be achieved even with the use of unshielded probes. We show that the weights of uncertainty sources vary with the values and dimensions of measured capacitances. Our work offers improvements on the classical calibration methods known in SMM and suggests possible new designs of reference standards for capacitance and dielectric traceable measurements. Experimental measurements are supported by numerical calculations of capacitances to reveal further paths for even higher improvements.


2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


2009 ◽  
Vol 1222 ◽  
Author(s):  
Pengzhao Gao ◽  
Evgeny V. Rebrov ◽  
Jaap C. Schouten ◽  
Richard Kleismit ◽  
John Cetnar ◽  
...  

AbstractNanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by sol–gel method on polycrystalline silicon substrates. The morphology and microwave absorption properties of the films calcined in the 673–1073 K range were studied by using XRD, AFM, near–field evanescent microwave microscopy, coplanar waveguide and direct microwave heating measurements. All films were uniform without microcracks. The increase of the calcination temperature from 873 to 1073 K and time from 1 to 3h resulted in an increase of the grain size from 12 to 27 nm. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315–355 K was observed in the film close to the critical grain size of 21 nm in diameter marked by the transition from single– to multi–domain structure of nanocrystals in Ni0.5Zn0.5Fe2O4 film and by a maximum in its coercivity.


2020 ◽  
Vol 117 (11) ◽  
pp. 112902
Author(s):  
Xiaoyang Chen ◽  
Binbin Huang ◽  
Yun Liu ◽  
Wenwu Wang ◽  
Ping Yu

2005 ◽  
Vol 82 (3-4) ◽  
pp. 368-373 ◽  
Author(s):  
N. Chérault ◽  
G. Carlotti ◽  
N. Casanova ◽  
P. Gergaud ◽  
C. Goldberg ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 155
Author(s):  
Yi-Lung Cheng ◽  
Chih-Yen Lee ◽  
Wei-Fan Peng ◽  
Giin-Shan Chen ◽  
Jau-Shiung Fang

In this study, Cu-2.2 at. % Nd alloy films using a co-sputtering deposition method were directly deposited onto porous low-dielectric-constant (low-k) films (SiOCH). The effects of CuNd alloy film on the electrical properties and reliability of porous low-k dielectric films were studied. The electrical characteristics and reliability of the porous low-k dielectric film with CuNd alloy film were enhanced by annealing at 425 °C. The formation of self-forming barrier at the CuNd/SiOCH interface was responsible for this improvement. Therefore, integration with CuNd and porous low-k dielectric is a promising process for advanced Cu interconnects.


2003 ◽  
Vol 766 ◽  
Author(s):  
Jingyu Hyeon-Lee ◽  
Jihoon Rhee ◽  
Jungbae Kim ◽  
Jin-Heong Yim ◽  
Seok Chang

AbstractLow dielectric fluoro-containing poly(silsesquioxanes) (PSSQs) have been synthesized using trifluoropropyl trimethoxysilane (TFPTMS), methyl trimethoxysilane (MTMS), and 2, 4, 6, 8-tetramethyl-2, 4, 6, 8-tetra(trimethoxysilylethyl) cyclotetrasiloxane. The properties of fluorocontaining PSSQs based thin films were studied by electrical, mechanical, and structural characterization. Film was spun on a silicon substrate, baked at 150°C and 250°C for 1 minute, respectively, and cured in the furnace at 420°C for 1 hour under vacuum condition. Thermally decomposable trifluoropropyl groups of the fluoro-containing PSSQ were served as a pore generator and partially contributed to lower a dielectric constant. â-cyclodextrin (CD) was also employed as a pore generator. The concentration of the pore generator in the film was varied from 0 to 30 %. The dielectric constants of the porous PSSQ films were found to be in the range of 2.7 – 1.9 (at 100 kHz). Hardness and Young's modulus of the films were measured by nano-indentation. The elastic modulus and hardness of the porous films were well correlated with the concentration of the pore generators. Positronium Annihilation Lifetime Spectroscopy (PALS) was employed to characterize a pore size of the porous fluoro-containing PSSQ film. The pore size of the film was less than 2.2 nm. The nanoporous films showed quite promising properties for commercial application.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2284
Author(s):  
Y. K. Sa ◽  
Junghwan Bang ◽  
Junhyuk Son ◽  
Dong-Yurl Yu ◽  
Yun-Chan Kim

This paper reported the enhancement in thermo-mechanical properties and chemical stability of porous SiCOH dielectric thin films fabricated with molecularly scaled pores of uniform size and distribution. The resulting porous dielectric thin films were found to exhibit far stronger resistance to thermo-mechanical instability mechanisms common to conventional SiCOH dielectric thin films without forgoing an ultralow dielectric constant (i.e., ultralow-k). Specifically, the elastic modulus measured by nano-indentation was 13 GPa, which was substantially higher than the value of 6 GPa for a porous low-k film deposited by a conventional method, while dielectric constant exhibited an identical value of 2.1. They also showed excellent resistance against viscoplastic deformation, as measured by the ball indentation method, which represented the degree of chemical degradation of the internal bonds. Indentation depth was measured at 5 nm after a 4-h indentation test at 400 °C, which indicated an ~89% decrease compared with conventional SiCOH film. Evolution of film shrinkage and dielectric constant after annealing and plasma exposure were reduced in the low-k film with a self-organized molecular film. Analysis of the film structure via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated an increase in symmetric linear Si–O–Si molecular chains with terminal –CH3 bonds that were believed to be responsible for both the decrease in dipole moment/dielectric constant and the formation of molecular scaled pores. The observed enhanced mechanical and chemical properties were also attributed to this unique nano-porous structure.


Sign in / Sign up

Export Citation Format

Share Document