Structural Design of High-Performance Concrete Bridge Beams

2000 ◽  
Vol 1696 (1) ◽  
pp. 171-178
Author(s):  
Xiaoming (Sharon) Huo ◽  
Maher K. Tadros

Recently high-performance concrete (HPC) has been used in highway bridges and has gained popularity for its short-term and prospective long-term performances. Benefits of using HPC include fewer girder lines required, longer span capacity of girders, reduced creep and shrinkage deformation, less prestress losses, longer life cycle, and less maintenance of bridges. Research has been conducted on several issues of structural design of HPC bridge beams. The topics discussed include the effects of section properties of prestressed concrete girders, allowable tensile and compressive stresses, creep and shrinkage deformations of HPC, and prediction of prestress losses with HPC. The results from a parametric study have shown that a section that can have a large number of strands placed in its bottom flange is more suitable for HPC applications. The use of 15-mm-diameter prestressing strands allows the higher prestressing force applied on sections and can provide more efficiency in HPC bridges. The research results also indicate that the allowable compressive strength of HPC has a major effect on the structural design of bridges, whereas the allowable tensile stress has a minor effect on the design. Equations for predicting prestress losses based on the experimental and analytical results are recommended. The recommended equations consider the effects of lower creep and shrinkage deformations of HPC.

Author(s):  
M. Myint Lwin ◽  
Bijan Khaleghi

The Washington State Department of Transportation is one of several state departments of transportation involved in demonstration projects to acquire information and data on the design, fabrication, and construction of prestressed concrete bridges with high-performance concrete (HPC). Predicting the time-dependent prestress losses due to the creep and shrinkage of HPC and the relaxation of prestressing steel is difficult because of the limited experience with and data on the creep and shrinkage properties of HPC. The AASHTO load resistance factor design specification approach to estimating prestress losses is discussed, and the time-step method and the modified rate-of-creep method are introduced as ways of predicting more accurately the time-dependent prestress losses. A design example is used to compare and discuss numerically the prestress losses computed by the various methods. The modified rate-of-creep analysis method yields the lowest losses. The modified rate-of-creep method is a desirable, comprehensive, applicable, and practical method for estimating time-dependent prestress losses in composite and noncomposite prestressed concrete girders with HPC. This method is suitable for manual and electronic computation.


2003 ◽  
Vol 1845 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Robert W. Barnes ◽  
J. Michael Stallings ◽  
Paul W. Porter

Results are reported from live-load tests performed on Alabama’s high-performance concrete (HPC) showcase bridge. Load distribution factors, deflections, and stresses measured during the tests are compared with values calculated using the provisions of the AASHTO LRFD Bridge Design Specifications and AASHTO Standard Specifications for Highway Bridges. Measured dynamic amplification of load effects was approximately equal to or less than predicted by both specifications. Distribution factors from both specifications were found to be conservative. Deflections computed according to AASHTO LRFD Bridge Design Specifications suggestions matched best with the measured deflections — overestimating the maximum deflections by 20% or less. Bottom flange stresses computed with AASHTO distribution factors were significantly larger than measured values. AASHTO LRFD Bridge Design Specifications provisions suggest a special procedure for computing exterior girder distribution factors in bridges with diaphragms. When two or more lanes were loaded, this special procedure did not reflect the actual behavior of the bridge and resulted in very conservative distribution factors for exterior girders. Further research is recommended to correct this deficiency.


Author(s):  
Yumin Yang ◽  
John J. Myers

Prestress losses have a direct impact on concrete stress development and deflection behavior of highway bridge members. A poor estimate of prestress losses can result in a structure in which allowable stresses are exceeded or camber and deflection behavior is poorly predicted, such that the serviceability of a structure may be adversely affected. This paper reports the prestress losses observed throughout fabrication, shipment, erection, and the first 2 years of service for the first high-performance superstructure concrete bridge in Missouri. The prestress losses investigated included prerelease losses, elastic shortening losses, relaxation losses, creep losses, and shrinkage losses. Results from the study were compared with eight commonly used loss estimate models for total prestress losses, including AASHTO and Prestressed Concrete Institute methods. Recommendations were proposed by the authors for the most appropriate methodology to use to predict prestress losses in high-strength concrete girders accurately.


Sign in / Sign up

Export Citation Format

Share Document