Three-Dimensional Finite Element Analysis of Jointed Plain Concrete Pavement with EverFE2.2
The features and concepts underlying EverFE2.2, a freely available three-dimensional finite element program for the analysis of jointed plain concrete pavements, are detailed. The functionality of EverFE has been greatly extended since its original release: multiple tied slab or shoulder units can be modeled, dowel misalignment or mislocation can be specified per dowel, nonlinear thermal or shrinkage gradients can be treated, and nonlinear horizontal shear stress transfer between the slabs and base can be simulated. Improvements have been made to the user interface, including easier load creation, user-specified mesh refinement, and expanded visualization capabilities. These new features are detailed, and the concepts behind the implementation of EverFE2.2 are explained. In addition, the results of two parametric studies are reported. The first study considers the effects of dowel locking and slab-base shear transfer and demonstrates that these factors can significantly affect the stresses in slabs subjected to both uniform shrinkage and thermal gradients. The second study examines transverse joint mislocation and dowel looseness on joint load transfer. As expected, joint load transfer is greatly reduced by dowel looseness. However, while transverse joint mislocation can significantly reduce peak dowel shears, it has relatively little effect on total load transferred across the joint for the models considered.