scholarly journals AIIS KUE AS A SMART GRID ELEMENT ON THE EXAMPLE OF BRANCH JSC "AMUR ELECTRIC NETWORKS"

2019 ◽  
Vol 3 (60) ◽  
pp. 21-27
Author(s):  
M.S. Mikhalchenko ◽  
A.A. Grinevich
Author(s):  
M. А. Fursanov ◽  
A. A. Zalotoy

The issues of prospective operation of the city electric networks in the conditions of the MART GRID, which will be quite different as compared to the traditional understanding and approaches, are under consideration. This requires the selection and application of appropriate analytical criteria and approaches to assessment, analysis and control of the networks. With this regard the following criteria are recommended: in a particular case – the optimal (minimal) technological electric power consumption (losses), while in general – economically reasonable (minimal) cost value of electric power transmission. It should be also borne in mind that contemporary urban networks are actively saturated with distributed sources of small generation that have radically changed the structure of electrical networks; therefore, account for such sources is an absolutely necessary objective of management regimes of urban electric networks, both traditional and in associated with the SMART GRID. A case of the analysis and control of urban electric 10 kV networks with distributed small sources of generation has been developed and presented according to the theoretical criterion of minimum relative active power losses in the circuit as a control case. The conducted research makes it possible to determine the magnitude of the tolerance network mode from the point of the theoretical minimum. 


Author(s):  
M. I. Fursanov

The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks) innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.). The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.


Author(s):  
Nawal Ait Aali ◽  
Amine Baina ◽  
Loubna Echabbi

Currently, smart grids have changed the world, given the great benefits of these critical infrastructures regarding the customers' satisfaction by offering them the electrical energy that they need for their business. Also, the smart grid aims to solve all the problems encountered in the current electrical grid (outage, lack of renewable energy, an excess in the produced power, etc.) by transmitting and sharing the information in real time between the different entities through the installation of the sensors. This chapter therefore presents the architecture of the smart grid by describing its objectives and advantages. In addition, the microgrids are presented as small electric networks. Then, focusing on the security aspects, an analysis of the different attacks and risks faced in the smart grids and more particularly in the microgrids is presented. After, different techniques and suitable security solutions are detailed to protect and secure the various elements of the smart grids and microgrids.


2022 ◽  
pp. 1317-1334
Author(s):  
Nawal Ait Aali ◽  
Amine Baina ◽  
Loubna Echabbi

Currently, smart grids have changed the world, given the great benefits of these critical infrastructures regarding the customers' satisfaction by offering them the electrical energy that they need for their business. Also, the smart grid aims to solve all the problems encountered in the current electrical grid (outage, lack of renewable energy, an excess in the produced power, etc.) by transmitting and sharing the information in real time between the different entities through the installation of the sensors. This chapter therefore presents the architecture of the smart grid by describing its objectives and advantages. In addition, the microgrids are presented as small electric networks. Then, focusing on the security aspects, an analysis of the different attacks and risks faced in the smart grids and more particularly in the microgrids is presented. After, different techniques and suitable security solutions are detailed to protect and secure the various elements of the smart grids and microgrids.


2020 ◽  
Vol 1679 ◽  
pp. 052083
Author(s):  
A S Lukovenko ◽  
V V Kukartsev ◽  
E I Semenova ◽  
A A Leonteva ◽  
D K Gek ◽  
...  

2020 ◽  
Vol 19 ◽  

Some technology introduction problems of Smart Grid in the electric networks of Ukraine are considered in the article. It is offered to apply the automats of parallel action in control system by a power supply. It is offered to make alteration in the structure of parallel action classical automat for the decision of problem vagueness detains. The general strategy is set for the construction of parallel action automats with fuzzy logic


2018 ◽  
Vol 12 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Jyrki Penttonen ◽  
Matti Lehtonen ◽  
Shafiq Muhammad
Keyword(s):  
Air Gap ◽  

Author(s):  
M. I. Fursanov ◽  
A. A. Zоlotoy

One of the main tasks being solved for all electric networks with open topology, including city electric networks, viz. a task of the choice of optimum points of disconnection, has been improved. It is shown that saturation of urban networks with distributed sources of small-scale generation causes the fact that mode parameters being determined in the urban SMART GRID conditions become observable. Therefore, the majority of problems of mode control, typical for urban distribution electric networks of a traditional design, lose their relevance under the SMART GRID conditions. The main technological task is to improve the selection of optimal points of disconnection of networks. Urban electric networks of the Belarusian United Energy System are actively saturated with distributed sources of small-scale generation, which can be connected to high-voltage buses of consumer transformer substations, including the ones on the load side; and they are equipped with automation to ensure synchronous operation with the power system and maintain autonomous operation. Therefore, the accounting of such generating sources becomes necessary as one of the objectives of managing the modes of urban electric networks (both traditional ones and the ones in the SMART GRID conditions). In the article the technique and algorithm of choice of optimal points of disconnection of city electric networks are proposed taking into account various conditions of application of sources of small generation: when the source operates in parallel with an electric network and has constant active and reactive generation or energizes the load isolated from a network taking into account restrictions of the power generated by a source. The solution of this task makes it possible to reduce losses of power and the electricity in a network much more than because of implementation of any other operational action. The developed algorithm was tested through the example of optimization of the points of disconnection of the fragment of the urban distribution network of 10 kV. An effective solution to the problem of choosing the initial positions of the points of disconnection of urban networks based on the Dijkstra algorithm is also proposed, which significantly reduces the time of their optimization.


Author(s):  
Fadel Bassam ◽  
Andrey Kryukov

The restoration and development of Iraq's electric power industry is planned to be carried out on the basis of the concept of intelligent electric networks (smart grid). To implement this concept, it is necessary to create integrated digital models of electrical networks. Such models can be implemented on the basis of methods and tools for modeling electric power systems in phase coordinates. The report presents the results of modeling normal and emergency modes of distribution electric networks of 11 kV.


Sign in / Sign up

Export Citation Format

Share Document