CONTINUOUS-TIME FRACTIONAL ORDER LINEAR SYSTEMS IDENTIFICATION USING CHEBYSHEV WAVELET

2020 ◽  
Vol 6 (8(77)) ◽  
pp. 23-28
Author(s):  
Shuen Wang ◽  
Ying Wang ◽  
Yinggan Tang

In this paper, the identification of continuous-time fractional order linear systems (FOLS) is investigated. In order to identify the differentiation or- ders as well as parameters and reduce the computation complexity, a novel identification method based on Chebyshev wavelet is proposed. Firstly, the Chebyshev wavelet operational matrices for fractional integration operator is derived. Then, the FOLS is converted to an algebraic equation by using the the Chebyshev wavelet operational matrices. Finally, the parameters and differentiation orders are estimated by minimizing the error between the output of real system and that of identified systems. Experimental results show the effectiveness of the proposed method.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Abdellatif Ben Makhlouf ◽  
Omar Naifar ◽  
Mohamed Ali Hammami ◽  
Bao-wei Wu

In this paper, an extension of some existing results related to finite-time stability (FTS) and finite-time boundedness (FTB) into the conformable fractional derivative is presented. Illustrative example is presented at the end of the paper to show the effectiveness of the proposed result.


Sign in / Sign up

Export Citation Format

Share Document