CHANGES IN LIGHTING STANDARDS AND THEIR INFLUENCE ON THE ARCHITECTURE AND ENERGY EFFICIENCY OF MODERN RESIDENTIAL BUILDINGS
Abstract. State regulations on the design of lighting in residential buildings in recent years have undergone significant changes, which in turn will significantly affect the architecture and energy efficiency of modern buildings of this type. This can be observed from the authors' analysis of the change in only one regulatory document given in this article – SCS (State Construction Standards) V.2.5-28: «Natural and artificial lighting» and only one lighting indicator: permissible deviation of the calculated value of CNL (coefficient of natural lighting) from the standardized value when choosing translucent structures of buildings. This article presents an analysis of this normative document in two versions – in the old one from 2012 and new from 2018. Based on the results of the analysis, the authors of this article found that, at the request of the architect, the area of translucent structures on the facades of two identical modern residential buildings can differ significantly: from the minimum with piece (separate) windows on the facades – where glazing occupies from 14.3% to 18.3% of the area of the facades; up to maximum with continuous glazing of facades – where glazing occupies up to 100% of the area of the facades of a residential building. These two facade glazing options are not only architecturally perceived differently, but they must also have different energy efficiency in order to provide different minimum allowable values of heat transfer resistance: for piece (individual) windows on the facade, this is R∑ ≥ Rq min = 0.6 m2•K/W and ordinary silicate glasses are suitable for their glazing, and for continuous glazing of the facade this should already be R∑ ≥ Rq min = 2.8 m2•K/W, that is, they must have the same heat-shielding properties as the outer walls, and their minimum allowable value of the heat transfer resistance must be 4.66 times more than for piece (separate) windows. For this option, ordinary silicate glass is no longer suitable, but modern glass-transparent structures with high heat-shielding properties should be used, for example Qbiss_Air, Pilkington, Heat Mirror Glass and others. They provide excellent protection against hypothermia in winter and overheating in summer, and have good sun protection properties. Their use in modern buildings contributes to energy savings for heating and cooling rooms throughout the year and creates increased comfort, but such translucent structures are much more expensive and better suited for elite housing construction than for social.