scholarly journals CHANGES IN LIGHTING STANDARDS AND THEIR INFLUENCE ON THE ARCHITECTURE AND ENERGY EFFICIENCY OF MODERN RESIDENTIAL BUILDINGS

Author(s):  
E.V. Vitvitskaya ◽  
◽  
D.V. Tarasevich ◽  

Abstract. State regulations on the design of lighting in residential buildings in recent years have undergone significant changes, which in turn will significantly affect the architecture and energy efficiency of modern buildings of this type. This can be observed from the authors' analysis of the change in only one regulatory document given in this article – SCS (State Construction Standards) V.2.5-28: «Natural and artificial lighting» and only one lighting indicator: permissible deviation of the calculated value of CNL (coefficient of natural lighting) from the standardized value when choosing translucent structures of buildings. This article presents an analysis of this normative document in two versions – in the old one from 2012 and new from 2018. Based on the results of the analysis, the authors of this article found that, at the request of the architect, the area of translucent structures on the facades of two identical modern residential buildings can differ significantly: from the minimum with piece (separate) windows on the facades – where glazing occupies from 14.3% to 18.3% of the area of the facades; up to maximum with continuous glazing of facades – where glazing occupies up to 100% of the area of the facades of a residential building. These two facade glazing options are not only architecturally perceived differently, but they must also have different energy efficiency in order to provide different minimum allowable values of heat transfer resistance: for piece (individual) windows on the facade, this is R∑ ≥ Rq min = 0.6 m2•K/W and ordinary silicate glasses are suitable for their glazing, and for continuous glazing of the facade this should already be R∑ ≥ Rq min = 2.8 m2•K/W, that is, they must have the same heat-shielding properties as the outer walls, and their minimum allowable value of the heat transfer resistance must be 4.66 times more than for piece (separate) windows. For this option, ordinary silicate glass is no longer suitable, but modern glass-transparent structures with high heat-shielding properties should be used, for example Qbiss_Air, Pilkington, Heat Mirror Glass and others. They provide excellent protection against hypothermia in winter and overheating in summer, and have good sun protection properties. Their use in modern buildings contributes to energy savings for heating and cooling rooms throughout the year and creates increased comfort, but such translucent structures are much more expensive and better suited for elite housing construction than for social.

2014 ◽  
Vol 941-944 ◽  
pp. 814-820 ◽  
Author(s):  
Daria Vladimirovna Petrosova ◽  
Dmitri Vadimovich Petrosov

The main direction of energy saving in construction is the construction of buildings with high heat-shielding properties walling. In connection with this widespread walling using efficient insulation, allow to increase thermal protection of buildings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1912 ◽  
Author(s):  
Vasco Granadeiro ◽  
Margarida Almeida ◽  
Tiago Souto ◽  
Vítor Leal ◽  
João Machado ◽  
...  

This work addresses the effect of using thermochromic paints in residential buildings. Two different thermochromic paint types were considered: One that changes properties through a step transition at a certain temperature, and another that changes properties in a gradual/linear manner throughout a temperature range. The studied building was a two-floor villa, virtually simulated through a digital model with and without thermal insulation, and considering thermochromic paints applied both on external walls and on the roof. The performance assessment was done through the energy use for heating and cooling (in conditioned mode), as well as in terms of the indoor temperature (in free-floating mode). Three different cities/climates were considered: Porto, Madrid, and Abu Dhabi. Results showed that energy savings up to 50.6% could be reached if the building is operated in conditioned mode. Conversely, when operated in free-floating mode, optimally selected thermochromic paints enable reductions up to 11.0 °C, during summertime, and an increase up to 2.7 °C, during wintertime. These results point out the great benefits of using optimally selected thermochromic paints for obtaining thermal comfort, and also the need to further develop stable and cost-effective thermochromic pigments for outdoor applications, as well as to test physical models in a real environment.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012146
Author(s):  
D Mohaibesh ◽  
S Monna ◽  
H Qadi ◽  
R Sokkar

Abstract Climate-resilient buildings in Palestine can play an important role in a more sustainable residential building sector. This paper aims at evaluating the effects of adopting architectural design strategies and material technologies from vernacular architecture to create a new climate-resilient building. The paper targets single houses as these represent the majority of residential buildings in suburban and rural areas, and are similar to the vernacular architecture in size and functionality. The EDSL Tas simulation tool was used to assess the thermal performance and energy savings in the proposed model compared with traditional houses and modern typical houses, in two different climatic zones. The proposed climate-resilient house has materials and design strategies derived from vernacular architecture, in addition to the use of thermal insulation. The results show that the proposed house is more climate-resilient compared to modern houses. In cold winter and hot summer climates, the proposed model presents a total annual heating and cooling energy consumption of 59% less than typical modern houses, and 5% more than old buildings. In hot arid summer and warm winter climates, the proposed house presents a total annual heating and cooling energy consumption of 58% less than a modern typical house and 8% more than the traditional house.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5979
Author(s):  
Ikram Merini ◽  
Angel Molina-García ◽  
M. Socorro García-Cascales ◽  
Mustapha Mahdaoui ◽  
Mohamed Ahachad

The trend in energy consumption, with a particular focus on heating and cooling demand, is an issue that is relevant to the promotion of new energy policies and more efficient energy systems. Moreover, heating and cooling energy demand is expected to rise in the next several decades, mainly due to climate change as well as increasing incomes in developing countries. In this context, the building sector is currently a relevant energy-intensive economic sector in Morocco; it accounts for 33% of the country’s total energy demand (as the sector with the second highest energy demand, after the transport sector), with the residential sector accounting for 25% and the tertiary sector accounting for 8%. Aiming to reduce energy dependence and promote sustainable development, the Moroccan government recently issued a comprehensive plan to increase the share of renewables and improve energy efficiency. This strategy includes novel thermal building regulations promoted by the Moroccan Agency for Energy Efficiency. This paper analyzes the thermal behavior and heating-cooling energy demand of a residential building located in Tangier (Morocco) as a case example, based on the country’s new thermal regulations and considering specific climatological conditions. A comparison with common Moroccan residential buildings as well as with those in nearby countries with similar meteorological conditions but significant differences in terms of energy demand regulation and requirements, such as Spain, is also included. Simulations were carried out using the DesingBuilder and EnergyPlus Software packages. According to the results, the last building thermal regulation requirements in Morocco need to be revised and extended in order to achieve the energy efficiency objectives established by the Moroccan government for 2030.


2018 ◽  
Vol 8 (3) ◽  
pp. 22-25
Author(s):  
Yury S. VYTCHIKOV ◽  
Mikhail Ye. SAPAREV ◽  
Vladislav A. GOLIKOV

The heat-shielding properties of three-layer external walls insulated with monolithic foam concrete are considered in the article. The temperature is given in rooms operated in intermitt ent heating conditions. An optimal exterior wall design is proposed using monolithic foam concrete for the construction of country cott ages. For this design, the results of heat engineering calculations are presented using the analytical dependence of determining the heat transfer resistance, which ensures the minimum warm-up time of the wall. The results of the calculation are presented in tabular form for a given heating time and density of foam concrete. Also a relationship is described to determine the maximum allowable resistance to heat transfer of the outer wall at diff erent densities of monolithic foam concrete.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Author(s):  
Hugo Hens

Since the 1990s, the successive EU directives and related national or regional legislations require new construction and retrofits to be as much as possible energy-efficient. Several measures that should stepwise minimize the primary energy use for heating and cooling have become mandated as requirement. However, in reality, related predicted savings are not seen in practice. Two effects are responsible for that. The first one refers to dweller habits, which are more energy-conserving than the calculation tools presume. In fact, while in non-energy-efficient ones, habits on average result in up to a 50% lower end energy use for heating than predicted. That percentage drops to zero or it even turns negative in extremely energy-efficient residences. The second effect refers to problems with low-voltage distribution grids not designed to transport the peaks in electricity whensunny in summer. Through that, a part of converters has to be uncoupled now and then, which means less renewable electricity. This is illustrated by examples that in theory should be net-zero buildings due to the measures applied and the presence of enough photovoltaic cells (PV) on each roof. We can conclude that mandating extreme energy efficiency far beyond the present total optimum value for residential buildings looks questionable as a policy. However, despite that, governments and administrations still seem to require even more extreme measurements regarding energy efficiency.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 206
Author(s):  
Zixuan Chen ◽  
Ahmed W. A. Hammad ◽  
Imriyas Kamardeen ◽  
Assed Haddad

Windows account for a significant proportion of the total energy lost in buildings. The interaction of window type, Window-to-Wall Ratio (WWR) scheduled and window placement height influence natural lighting and heat transfer through windows. This is a pressing issue for nontropical regions considering their high emissions and distinct climatic characteristics. A limitation exists in the adoption of common simulation-based optimisation approaches in the literature, which are hardly accessible to practitioners. This article develops a numerical-based window design optimisation model using a common Building Information Modelling (BIM) platform adopted throughout the industry, focusing on nontropical regions of Australia. Three objective functions are proposed; the first objective is to maximise the available daylight, and the other two emphasize undesirable heat transfer through windows in summer and winter. The developed model is tested on a case study located in Sydney, Australia, and a set of Pareto-optimum solutions is obtained. Through the use of the proposed model, energy savings of up to 8.57% are achieved.


2018 ◽  
Vol 196 ◽  
pp. 04078
Author(s):  
Elena Malyavina ◽  
Anastasya Frolova

A large number of factors influence the economically feasible heat transfer resistance of the building enclosing structures. First of all, it is the cost of insulation and heat for the building heating in the cold season. As shown by studies, it is not enough for air-conditioned buildings. The result depends on the mode of the building operation in time and the heat load on the heating and cooling systems. Therefore, in addition to these significant factors of economic feasibility of the thermal protection level, there are the cost of electricity for the production of cold for cooling the building, the cost of the building heating and cooling systems and the cost of connection to power supply networks. The got result is important to convey to the professional community in a clear and compact form. In the present work the buildings of administrative and office purpose are considered, the working day of which lasts from 9-00 to 18-00 hours with different specific heat supply from 0 to 80 W/m2 on the estimated area during working hours. Generalization of the research results is made on the basis of specific heat protection characteristics of the building, which is a product of the overall heat transfer coefficient of the building and the compactness coefficient. The total heat transfer coefficient of the building characterizes the heat losses and the heat inflows to the building through the enclosing structures, and the compactness coefficient can serve as an indicator of the surface area of the building, which is covered with insulation. For these buildings provision has been made for identification of the areas of the total discounted cost combination for all of the above components and the specific heat protection characteristics of the building relating to the feasibility of the specified level of the thermal protection.


Sign in / Sign up

Export Citation Format

Share Document