scholarly journals IN VITRO AND IN VIVO EVALUATION OF 2-CHLOROE THYLN ITROSOUREA DERIVATIVES AS ANTITUMOR AGENTS

2015 ◽  
Vol 37 (1) ◽  
pp. 23-29
Author(s):  
A Sen ◽  
K K Goswami ◽  
A Mallick ◽  
A K Saxena ◽  
U Sanyal ◽  
...  

Aim: To evaluate potential of Naphthal-NU, Napro-NU and 5-Nitro-naphthal-NU, 2-chloroethylnitrosourea compounds with substituted naphthalimide in the pre-clinical studies. Materials and Methods: In vitro cytotoxicity of three nitrosoureas was determined in human and mouse tumor cell lines by MTT assays. In vivo anti-tumor potential was evaluated in Sarcoma-180 (S-180) and Ehrlich’s carcinoma (EC) solid tumors. Apoptosis in S-180 cells was analyzed by using Annexin V-Propidium Iodide (PI). Histological analysis of liver and kidney was performed at optimum dose (50 mg/kg). Expression status of CD4+, CD8+ and CD25+ cells in treated mouse were also examined. Results: Significant tumor growth retardation by the compounds was noted in early and advanced disease groups, as the life span of drug treated mice increased considerably. Drug induced killing was observed by induction of apoptosis. Naphthal-NU and 5-Nitro-naphthal-NU were effective to normalize the tumor induced structural abnormalities of liver and kidney. The compounds have no immunotoxic effect on CD4+ and CD8+ T cells and down regulate CD4+CD25+ regulatory T cells. Conclusion: Overall data holds promise for the antitumor activity with lower toxicity of the compounds that can be utilized for the treatment of human malignant tumors.

2010 ◽  
Vol 20 (17) ◽  
pp. 5277-5281 ◽  
Author(s):  
Su Hui Yang ◽  
Hue Thi My Van ◽  
Thanh Nguyen Le ◽  
Daulat Bikram Khadka ◽  
Suk Hee Cho ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173529 ◽  
Author(s):  
Stef De Lombaerde ◽  
Sara Neyt ◽  
Ken Kersemans ◽  
Jeroen Verhoeven ◽  
Lindsey Devisscher ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 450-450
Author(s):  
Rozemarijn S. van Rijn ◽  
Elles R. Simonetti ◽  
Gert Storm ◽  
Mark Bonyhadi ◽  
Anton Hagenbeek ◽  
...  

Abstract T cells retrovirally modified to express therapeutic genes encoding cytokines, exogenous TCRs or suicide molecules represent a novel class of immune therapeutics of great potency. However, recent clinical trials using retrovirally-modified T cells have indicated that T cells exhibit a diminished reactivity upon ex vivo manipulation. In addition, virus-specific memory T cells seem to be lost during gene transfer. In a BNML rat model we have shown that the culture procedure is one of the critical parameters. To preserve T cell reactivity, reliable models are required which permit readout of human T cell activity. We recently developed a huPBMC-RAG2−/−γc−/− mouse model for xenogeneic graft-versus-host disease (xGVHD), in which iv injection of 15 x 106 human T cells into RAG2−/−γc−/− mice consistently leads to high level engraftment and lethal xGVHD within 3 weeks in 80% of mice (van Rijn et al, Blood 2003). We have now used this model to analyze in vivo functionality of human T cells following different ex vivo culture procedures. For this, we cultured human T cells for 7 days with either of the two currently available clinically applicable stimulation conditions: 1) via CD3 and 2) via CD3/CD28. In addition, we included CD3/CD28/4-1BB stimulation to explore the effect of extensive costimulation. Mice were injected with escalating doses T cells. HuCD45+ cells in peripheral blood were measured by FACS. Lethal xGVHD occurred at only 6 times (90.106) the dose of fresh cells for CD3-stimulated T cells and 3 times for CD3/28- or CD3/28/4-1BB-stimulated cells. About 20% of surviving mice developed chronic xGVHD, independent of culture method. While lethal xGVHD was always associated with very high levels of engraftment (up to 95%) engraftment levels in chronic mice ranged from 1–75%. To compare the impact of the different culture conditions on in vivo T cell function, we analyzed engraftment potential. The fraction of huCD45+ cells was plotted against the time and the areas under the curves were compared. Based on a total of 68 mice, statistical analysis showed a 2-fold improvement of engraftment potential for C28-costimulated human T cells compared to CD3-stimulated cells (P<0.0001). Additional ligation of 4-1BB did not increase engraftment potential. In addition, different T cell subsets (naïve, memory, effector) were monitored based on the combined expression of CD45RA, CD27 and CCR7. For all primary T cells and variably cultured T cells, a strikingly similar pattern was observed in vivo. After 3 weeks mainly effector and memory effector T cells (both CD4+ and CD8+) could be detected, suggesting a (xeno-)antigen-driven survival and expansion. This was a very consistent observation independent of donor, culture condition, engraftment level or severity of disease. In conclusion, in vitro costimulation preserves in vivo functionality of human T cells and should therefore be included in future clinical protocols for ex vivo manipulation of T cells. These data show the feasibility to use the huPBMC-RAG2−/−γc−/− model for in vivo evaluation of in vitro effects on human T cells. This model is the most sensitive to date for in vivo evaluation of human T cells and will be a promising new tool for the study of human T cells in, for instance, autoimmune disease, cancer and infectious diseases like AIDS.


2021 ◽  
Vol 22 (6) ◽  
pp. 2974
Author(s):  
Marina Maria Bellet ◽  
Claudia Stincardini ◽  
Claudio Costantini ◽  
Marco Gargaro ◽  
Stefania Pieroni ◽  
...  

The circadian clock driven by the daily light–dark and temperature cycles of the environment regulates fundamental physiological processes and perturbations of these sophisticated mechanisms may result in pathological conditions, including cancer. While experimental evidence is building up to unravel the link between circadian rhythms and tumorigenesis, it is becoming increasingly apparent that the response to antitumor agents is similarly dependent on the circadian clock, given the dependence of each drug on the circadian regulation of cell cycle, DNA repair and apoptosis. However, the molecular mechanisms that link the circadian machinery to the action of anticancer treatments is still poorly understood, thus limiting the application of circadian rhythms-driven pharmacological therapy, or chronotherapy, in the clinical practice. Herein, we demonstrate the circadian protein period 1 (PER1) and the tumor suppressor p53 negatively cross-regulate each other’s expression and activity to modulate the sensitivity of cancer cells to anticancer treatments. Specifically, PER1 physically interacts with p53 to reduce its stability and impair its transcriptional activity, while p53 represses the transcription of PER1. Functionally, we could show that PER1 reduced the sensitivity of cancer cells to drug-induced apoptosis, both in vitro and in vivo in NOD scid gamma (NSG) mice xenotransplanted with a lung cancer cell line. Therefore, our results emphasize the importance of understanding the relationship between the circadian clock and tumor regulatory proteins as the basis for the future development of cancer chronotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A211-A211
Author(s):  
Gail Turner ◽  
Gabriela Diaz ◽  
Andreia Costa ◽  
Yeonjoo Oh ◽  
Jianguo Huang ◽  
...  

BackgroundAdoptive transfer of chimeric antigen receptor (CAR)-expressing T cells targeting cell surface antigens has shown remarkable success in hematological malignancies. However, only limited success has been achieved to date with CAR T cells, or their engineered T cell receptor (eTCR) counterparts, in the context of solid tumors. This is largely due to: 1) challenges in identifying highly expressed, tumor-specific antigens and; 2) the immune-suppressive tumor microenvironment mediated by cellular and secreted factors such as TGFβ, known to suppress intra-tumoral immunity and notably elevated in many human cancers, including in human papilloma virus (HPV)-associated cancers (e.g. head and neck squamous cell carcinoma and cervical cancers).Here, we describe the generation of highly potent, TGFβ-armored, engineered T cells expressing a novel fully human, natural TCRαβ sequence that is HLA-A*02:01-restricted, CD8 coreceptor-independent and targets the tumor-restricted HPV-16 E7(11–19) onco-peptide.MethodsDonor-derived T cells were genetically engineered using high efficiency CRISPR-Cas9 editing as follows: 1) TRAC domain knock-out (KO) to prevent endogenous TCR expression; 2) knock-in of an HPV-specific eTCR at the TRAC locus; and 3) KO of TGFBR2 to prevent TGFβ signaling. Functional evaluation of edited T cells was performed in vitro using 3D serial spheroid stimulation as well as in vivo using NSG mouse tumor xenografts and against two cancer lines, SCC-152 and CasKi.ResultsUnder chronic antigen stimulation and in the presence of high TGFβ at optimal effector-to-target (E:T) ratio, HPV eTCR WT (control) and HPV eTCR TGFBR2 KO cells demonstrated robust and comparable cytotoxic functions in vitro. However, when tested at suboptimal E:T ratio, HPV eTCR TGFBR2 KO cells demonstrated superior expansion (>5-fold difference), cytotoxicity and an improved functional phenotype, suggesting that TGFβ-Armoring may decouple T cell expansion and the onset of exhaustion. In vivo studies demonstrated significant inhibition of tumor growth (p <0.0001) and survival advantage (p <0.05) in HPV eTCR TGFBR2 KO treated NSG mice when compared to HPV eTCR WT treated animals at a suboptimal dose of eTCR-positive cells. Additionally, in all conditions tested, T cell expression of CD103 (a pharmacodynamic marker of TGFβ-induced signaling) was ablated in TGFBR2 KO groups. Both in vitro and in vivo data robustly reproduced across donors and tumor models.ConclusionsPharmacology studies demonstrate that the HPV eTCR armoring strategy aimed at overcoming TGFβ-mediated immune-suppression is highly effective in suboptimal conditions. Additionally, TGFβ-armored eTCR cells presented with improved pharmacodynamic and phenotypic characteristics, paving the way for effective clinical applications in solid tumors.AcknowledgementsRibonucleoprotein complexes designed specifically for the editing of human TRAC and TGFBR2 loci were provided by Editas Medicine.


Sign in / Sign up

Export Citation Format

Share Document