scholarly journals The role of ice thickness and bed properties on the dynamics of the enhanced-flow tributaries of Bailey Ice Stream and Slessor Glacier, East Antarctica

2004 ◽  
Vol 39 ◽  
pp. 366-372 ◽  
Author(s):  
David M. Rippin ◽  
Jonathan L. Bamber ◽  
Martin J. Siegert ◽  
David G. Vaughan ◽  
Hugh F. J. Corr

AbstractAirborne radio-echo sounding investigations in the upper reaches of Bailey Ice Stream and Slessor Glacier, Coats Land, East Antarctica, have shown that enhanced-flow tributaries are associated with well-defined areas of relatively thicker ice, and are separated from each other by areas of relatively thinner ice. A numerical modelling study has revealed that while internal ice deformation might account for all the observed flow in inter-tributary areas and the majority in the Slessor tributaries, a significant proportion of the flow of Bailey tributary is attributable to basal motion. Further, investigations of depth-corrected basal reflection power indicate that the bed underlying both Bailey and Slessor enhanced-flow tributaries is significantly smoother than in the slower-moving inter-tributary areas. It is thus proposed that enhanced motion within Bailey tributary (and also perhaps Slessor) may be facilitated by a reduction in basal roughness, caused by the accumulation of water and/or sediments within subglacial valleys, or by the erosion and smoothing of bed obstacles.

1975 ◽  
Vol 15 (73) ◽  
pp. 137-150 ◽  
Author(s):  
David J. Drewry

AbstractThe errors involved in ice thickness determinations in Antarctica by seismic reflection shooting, gravity observations and radio-echo sounding are briefly discussed. Relative accuracies of 3%, 7-10% and 1.5% have been suggested. Double checks of ice depths from radar sounding in east Antarctica indicate an internal consistency of measurement for this technique of <1%. Comparison of carefully executed seismic shooting and routine radio-echo sounding results against absolute ice thickness values from two deep core drilling sites show no significant differences between these two remote methods (i.e. both are better than 1.5%).Over 60 comparisons are examined between radar ice thicknesses and over-snow measurements obtained on eight independent traverses in east Antarctica. Three traverses exhibit consistently unacceptable results-U.S. Victoria Land Traverse II (southern leg), Commonwealth Transanlarctic Expedition and the U.S.S.R. Vostok to South Pole Traverse—which probably result from misinterpretation of “noisy” seismograms. The remaining comparisons indicate mean differences, including some navigational uncertainty, of ≈3%, <8% and 5% between radio-echo and (1) seismic, (2) gravity, and (3) gravity tied to seismic determinations, respectively.


1982 ◽  
Vol 3 ◽  
pp. 355-355 ◽  
Author(s):  
Olav Orheim

The Norwegian Antarctic Research Expedition 1978–79 used the Scott Polar Research Institute Mk IV radio echo-sounding system fitted in a Bell 206B helicopter to survey 620 km of Riiser-Larsenisen and 100 km across the outer part of Stancomb-Wills Ice Stream. Observed thicknesses of Riiser-Larsenisen decrease from 700 m at the grounding line to less than 200 m at the ice front. The thickness of Bllenga ice rise varied between 200 and 450 m. The ice shelf thins towards the east, and seems there to flow obliquely to the ice front (Fig.1).Step-like change in thickness of >150 m over 500 m horizontal distance i s observed in the central part of the ice shelf. The records also demonstrate undulations in ice thickness of 600 to 700 m wavelength and 50 m amplitude, and various types of rifts and crevasses. Internal layering is recorded at 250 to 300 m depth over Blåenga and i n the ice shelf up-stream of this ice rise.Observed ice thicknesses on Stancomb-Wills Ice Stream range from 130 to 220 m, with no systematic decrease towards the ice front. The records include long sections of heavy scatter from densely spaced rifts and bottom crevasses. This ice stream attains velocities > 4 km a−1, and is much more active than Riiser-Larsenisen. This high activity has resulted in extensive fracturing of the ice shelf.


1982 ◽  
Vol 3 ◽  
pp. 355 ◽  
Author(s):  
Olav Orheim

The Norwegian Antarctic Research Expedition 1978–79 used the Scott Polar Research Institute Mk IV radio echo-sounding system fitted in a Bell 206B helicopter to survey 620 km of Riiser-Larsenisen and 100 km across the outer part of Stancomb-Wills Ice Stream. Observed thicknesses of Riiser-Larsenisen decrease from 700 m at the grounding line to less than 200 m at the ice front. The thickness of Bllenga ice rise varied between 200 and 450 m. The ice shelf thins towards the east, and seems there to flow obliquely to the ice front (Fig.1). Step-like change in thickness of &gt;150 m over 500 m horizontal distance i s observed in the central part of the ice shelf. The records also demonstrate undulations in ice thickness of 600 to 700 m wavelength and 50 m amplitude, and various types of rifts and crevasses. Internal layering is recorded at 250 to 300 m depth over Blåenga and i n the ice shelf up-stream of this ice rise. Observed ice thicknesses on Stancomb-Wills Ice Stream range from 130 to 220 m, with no systematic decrease towards the ice front. The records include long sections of heavy scatter from densely spaced rifts and bottom crevasses. This ice stream attains velocities &gt; 4 km a−1, and is much more active than Riiser-Larsenisen. This high activity has resulted in extensive fracturing of the ice shelf.


2009 ◽  
Vol 46 (6) ◽  
Author(s):  
C. Bianchi ◽  
L. Cafarella ◽  
P. De Michelis ◽  
A. Forieri ◽  
M. Frezzotti ◽  
...  

1975 ◽  
Vol 15 (73) ◽  
pp. 137-150 ◽  
Author(s):  
David J. Drewry

AbstractThe errors involved in ice thickness determinations in Antarctica by seismic reflection shooting, gravity observations and radio-echo sounding are briefly discussed. Relative accuracies of 3%, 7-10% and 1.5% have been suggested. Double checks of ice depths from radar sounding in east Antarctica indicate an internal consistency of measurement for this technique of &lt;1%. Comparison of carefully executed seismic shooting and routine radio-echo sounding results against absolute ice thickness values from two deep core drilling sites show no significant differences between these two remote methods (i.e. both are better than 1.5%).Over 60 comparisons are examined between radar ice thicknesses and over-snow measurements obtained on eight independent traverses in east Antarctica. Three traverses exhibit consistently unacceptable results-U.S. Victoria Land Traverse II (southern leg), Commonwealth Transanlarctic Expedition and the U.S.S.R. Vostok to South Pole Traverse—which probably result from misinterpretation of “noisy” seismograms. The remaining comparisons indicate mean differences, including some navigational uncertainty, of ≈3%, &lt;8% and 5% between radio-echo and (1) seismic, (2) gravity, and (3) gravity tied to seismic determinations, respectively.


2022 ◽  
Vol 14 (1) ◽  
pp. 241
Author(s):  
Sergey Popov

This study demonstrates the results of Russian airborne radio-echo sounding (RES) investigations and also seismic reflection soundings carried out in 1971–2020 over a vast area of coastal part of East Antarctica. It is the first comprehensive summary mapping of these data. Field research, equipment, errors of initial RES data, and methods of gridding are discussed. Ice thickness, ice base elevation, and bedrock topography are presented. The ice thickness across the research area varies from a few meters to 3620 m, and is greatest in the local subglacial depressions. The average thickness is about 1220 m. The total volume of the ice is about 710,500 km3. The bedrock heights vary from 2860 m below sea level in the ocean bathyal zone to 2040 m above sea level in the Grove Mountains area (4900 m relief). The main directions of the bedrock orographic forms are concentrated mostly in three intervals: 345∘–30∘, 45∘–70∘, and 70∘–100∘. The bottom melting rate was estimated on the basis of the simple Zotikov model. Total annual melting under the study area is about 0.633 cubic meters. The total annual melting in the study area is approximately 1.5 mm/yr.


2007 ◽  
Vol 53 (181) ◽  
pp. 289-297 ◽  
Author(s):  
Sergey V. Popov ◽  
Valery N. Masolov

AbstractDuring the summer field seasons of 1987–91, studies of central East Antarctica by airborne radio-echo sounding commenced. This scientific work continued in the 1990s in the Vostok Subglacial Lake area and along the traverse route from Mirny, and led to the discovery of 16 new subglacial water cavities in the areas of Domes Fuji and Argus and the Prince Charles Mountains. Twenty-nine subglacial water cavities were revealed in the area near Vostok, along with a feature we believe to be a subglacial river. Two subglacial lakes were discovered along the Mirny–Vostok traverse route. These are located 50 km north of Komsomolskaya station and under Pionerskaya station. We find high geothermal heat flux in the vicinity of the largest of the subglacial lakes, and suggest this may be due to their location over deep faults where additional mantle heat is available.


1998 ◽  
Vol 44 (146) ◽  
pp. 149-156 ◽  
Author(s):  
C. R. Bentley ◽  
N. Lord ◽  
C. Liu

AbstractDigital airborne radar data were collected during the 1987-88 Antarctic field season in nine gridded blocks covering the downstream portions of Ice Stream B (6km spacing) and Ice Stream C (11 km spacing), together with a portion of ridge BC between them. An automated processing procedure was used for picking onset times of the reflected radar pulses, converting travel times to distances, interpolating missing data, converting pressure transducer readings, correcting navigational drift, performing crossover analysis, and zeroing rémanent crossover errors. Interpolation between flight-lines was carried out using the minimum curvature method.Maps of ice thickness (estimated accuracy 20 m) and basal-reflection strength (estimated accuracy 1 dB) were produced. The ice-thickness map confirms the characteristics of previous reconnaissance maps and reveals no new features. The reflection-strength map shows pronounced contrasts between the ice streams and ridge BC and between the two ice streams themselves. We interpret the reflection strengths to mean that the bed of Ice Stream C, as well as that of Ice Stream B, is unfrozen, that the bed of ridge BC is frozen and that the boundary between the frozen bed of ridge BC and the unfrozen bed of Ice Stream C lies precisely below the former shear margin of the ice stream.


1986 ◽  
Vol 8 ◽  
pp. 156-158 ◽  
Author(s):  
Arne Chr. Saetrang ◽  
Bjørn Wold

The paper describes instrumentation, navigation methods, and interpretation problems from radio echo-sounding on parts of Jostedalsbreen. A map of the subglacial topography is presented. Ice thickness ranges from 60 m to 600 m with most sections between 150 m and 300 m.


1999 ◽  
Vol 29 ◽  
pp. 267-272 ◽  
Author(s):  
D. Steinhage ◽  
U. Nixdorf ◽  
U. Meyer ◽  
H. Miller

AbstractSince the austral summer of 1994-95 the Alfred Wegener Institute has carried out airborne radio-echo sounding (RES) measurements in Antarctica with its newly designed RES system. Since 1995-96 an ongoing pre-site survey for an ice-coring drill site in Dronning Maud Land has been carried out as part of the European Project for Ice Goring in Antarctica. The survey covers an area of 948 000 km2, with >49 500 km of airborne RES obtained from >200 hours of flight operation flown during the period 1994-97. In this paper, first results of the airborne RES survey are graphically summarized as newly derived maps of the ice thickness and subglacial topography, as well as a three-dimensional view of surface and subglacial bed and outcrop topography, revealing a total ice volume of 1.48 x 106 km3.


Sign in / Sign up

Export Citation Format

Share Document