scholarly journals Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope

1999 ◽  
Vol 45 (150) ◽  
pp. 315-324 ◽  
Author(s):  
Martin O. Jeffries ◽  
Tingjun Zhang ◽  
Karoline Frey ◽  
Nick Kozlenko

AbstractThe conductive heat flux through the snow cover (Fa) is used as a proxy to examine the hypothesis that there is a significant heat flow from the Alaskan North Slope to the atmosphere because of the large number of lakes in the region. Fa is estimated from measurements of snow depth, temperature and density on tundra, grounded ice and floating ice in mid-April 1997 at six lakes near Barrow, northwestern Alaska. The mean Fa values from tundra, grounded ice and floating ice are 1.5, 5.4 and 18.6 W m2, respectively. A numerical model of the coupled snow/ice/water/soil system is used to simulate Fa and there is good agreement between the simulated and measured fluxes. The flux from the tundra is low because the soils have a relatively low thermal conductivity and the active layer cools significantly after freezing completely the previous autumn. The flux from the floating ice is high because the ice has a relatively high thermal conductivity, and a body of relatively warm water remains below the growing ice at the end of winter. The flux from the grounded ice is intermediate between that from the tundra and that from the floating ice, and depends on the timing of the contact between the growing ice and the lake sediments, and whether or not those sediments freeze completely. Using the estimated Fa values combined with the areal fractions of tundra, grounded ice and floating ice derived from synthetic aperture radar images, area-weighted Fa values are calculated for six areas. Fa values for the ice vary between 9.8 and 13.8 W m−2, and those from the ice plus tundra vary between 3.9 and 5.3 W m−2. The Fa values are similar to those observed in the sea-ice-covered regions of the south and north polar oceans in winter. The North Slope of Alaska may thus make a significant contribution to the regional energy budget in winter.

1999 ◽  
Vol 45 (150) ◽  
pp. 315-324 ◽  
Author(s):  
Martin O. Jeffries ◽  
Tingjun Zhang ◽  
Karoline Frey ◽  
Nick Kozlenko

AbstractThe conductive heat flux through the snow cover (Fa) is used as a proxy to examine the hypothesis that there is a significant heat flow from the Alaskan North Slope to the atmosphere because of the large number of lakes in the region.Fais estimated from measurements of snow depth, temperature and density on tundra, grounded ice and floating ice in mid-April 1997 at six lakes near Barrow, northwestern Alaska. The meanFavalues from tundra, grounded ice and floating ice are 1.5, 5.4 and 18.6 W m2, respectively. A numerical model of the coupled snow/ice/water/soil system is used to simulateFaand there is good agreement between the simulated and measured fluxes. The flux from the tundra is low because the soils have a relatively low thermal conductivity and the active layer cools significantly after freezing completely the previous autumn. The flux from the floating ice is high because the ice has a relatively high thermal conductivity, and a body of relatively warm water remains below the growing ice at the end of winter. The flux from the grounded ice is intermediate between that from the tundra and that from the floating ice, and depends on the timing of the contact between the growing ice and the lake sediments, and whether or not those sediments freeze completely. Using the estimatedFavalues combined with the areal fractions of tundra, grounded ice and floating ice derived from synthetic aperture radar images, area-weightedFavalues are calculated for six areas.Favalues for the ice vary between 9.8 and 13.8 W m−2, and those from the ice plus tundra vary between 3.9 and 5.3 W m−2. TheFavalues are similar to those observed in the sea-ice-covered regions of the south and north polar oceans in winter. The North Slope of Alaska may thus make a significant contribution to the regional energy budget in winter.


2021 ◽  
Author(s):  
Antoni Miszewski ◽  
Adam Miszewski ◽  
Richard Stevens ◽  
Matteo Gemignani

Abstract A set of 5 wells were to be drilled with directional Coiled Tubing Drilling (CTD) on the North Slope of Alaska. The particular challenges of these wells were the fact that the desired laterals were targeted to be at least 6000ft long, at a shallow depth. Almost twice the length of laterals that are regularly drilled at deeper depths. The shallow depth meant that 2 of the 5 wells involved a casing exit through 3 casings which had never been attempted before. After drilling, the wells were completed with a slotted liner, run on coiled tubing. This required a very smooth and straight wellbore so that the liner could be run as far as the lateral had been drilled. Various methods were considered to increase lateral reach, including, running an extended reach tool, using friction reducer, increasing the coiled tubing size and using a drilling Bottom Hole Assembly (BHA) that could drill a very straight well path. All of these options were modelled with tubing forces software, and their relative effectiveness was evaluated. The drilling field results easily exceeded the minimum requirements for success. This project demonstrated record breaking lateral lengths, a record length of liner run on coiled tubing in a single run, and a triple casing exit. The data gained from this project can be used to fine-tune the modelling for future work of a similar nature.


1999 ◽  
Vol 45 (150) ◽  
pp. 315-324 ◽  
Author(s):  
Martin O Jeffries ◽  
Tingjun Zhang ◽  
Karoline Frey ◽  
Nick Kozlenko

2021 ◽  
pp. 1-5
Author(s):  
Antoni Miszewski ◽  
Adam Miszewski ◽  
Richard Stevens ◽  
Matteo Gemignani

Summary A set of five wells were to be drilled with directional coiled tubing drilling (CTD) on the North Slope of Alaska. The particular challenges of these wells were the fact that the desired laterals were targeted to be at least 6,000 ft long, at a shallow depth, almost twice the length of laterals that are regularly drilled at deeper depths. The shallow depth meant that two of the five wells involved a casing exit through three casings, which had never been attempted before. After drilling, the wells were completed with a slotted liner, run on coiled tubing (CT). This required a very smooth and straight wellbore so that the liner could be run as far as the lateral had been drilled. In this paper, we focus on one of the two wells on which triple casing exit was performed. However, the same considerations and results apply to the other wells on which the same technology has been used. Various methods were considered to increase lateral reach, including running an extended reach tool, using a friction reducer, increasing the CT size, and using a drilling bottomhole assembly (BHA) that could drill a very straight well path. All of these options were modeled with tubing forces software, and their relative effectiveness was evaluated. The drilling field results easily exceeded the minimum requirements for success. This project demonstrated record-breaking lateral lengths, a record length of liner run on CT in a single run, and a triple casing exit. The data gained from this project can be used to fine-tune the modeling for future work of a similar nature.


Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 346-358 ◽  
Author(s):  
Greg Beresford‐Smith ◽  
Rolf N. Rango

Strongly dispersive noise from surface waves can be attenuated on seismic records by Flexfil, a new prestack process which uses wavelet spreading rather than velocity as the criterion for noise discrimination. The process comprises three steps: trace‐by‐trace compression to collapse the noise to a narrow fan in time‐offset (t-x) space; muting of the noise in this narrow fan; and inverse compression to recompress the reflection signals. The process will work on spatially undersampled data. The compression is accomplished by a frequency‐domain, linear operator which is independent of trace offset. This operator is the basis of a robust method of dispersion estimation. A flexural ice wave occurs on data recorded on floating ice in the near offshore of the North Slope of Alaska. It is both highly dispersed and of broad frequency bandwidth. Application of Flexfil to these data can increase the signal‐to‐noise ratio up to 20 dB. A noise analysis obtained from a microspread record is ideal to use for dispersion estimation. Production seismic records can also be used for dispersion estimation, with less accurate results. The method applied to field data examples from Alaska demonstrates significant improvement in data quality, especially in the shallow section.


2012 ◽  
Vol 25 (23) ◽  
pp. 8238-8258 ◽  
Author(s):  
Johannes Mülmenstädt ◽  
Dan Lubin ◽  
Lynn M. Russell ◽  
Andrew M. Vogelmann

Abstract Long time series of Arctic atmospheric measurements are assembled into meteorological categories that can serve as test cases for climate model evaluation. The meteorological categories are established by applying an objective k-means clustering algorithm to 11 years of standard surface-meteorological observations collected from 1 January 2000 to 31 December 2010 at the North Slope of Alaska (NSA) site of the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM). Four meteorological categories emerge. These meteorological categories constitute the first classification by meteorological regime of a long time series of Arctic meteorological conditions. The synoptic-scale patterns associated with each category, which include well-known synoptic features such as the Aleutian low and Beaufort Sea high, are used to explain the conditions at the NSA site. Cloud properties, which are not used as inputs to the k-means clustering, are found to differ significantly between the regimes and are also well explained by the synoptic-scale influences in each regime. Since the data available at the ARM NSA site include a wealth of cloud observations, this classification is well suited for model–observation comparison studies. Each category comprises an ensemble of test cases covering a representative range in variables describing atmospheric structure, moisture content, and cloud properties. This classification is offered as a complement to standard case-study evaluation of climate model parameterizations, in which models are compared against limited realizations of the Earth–atmosphere system (e.g., from detailed aircraft measurements).


2018 ◽  
Vol 219 ◽  
pp. 221-232 ◽  
Author(s):  
Rocio R. Duchesne ◽  
Mark J. Chopping ◽  
Ken D. Tape ◽  
Zhuosen Wang ◽  
Crystal L.B. Schaaf

Sign in / Sign up

Export Citation Format

Share Document