scholarly journals Reutilization of granite powder as a component of permeable reactive barriers for the treatment of Cr(VI)-contaminated waters .

2014 ◽  
Vol 4 ◽  
Author(s):  
María Teresa Barral ◽  
Ángel Liste ◽  
Alejandro Balufo ◽  
Remigio Paradelo ◽  
Javier Cancelo-González ◽  
...  

Permeable reactive barriers (PRBs) are efficient and cost-effective systems for groundwater remediation. Different types of material have been tested as reactive media for constructing PRBs. To this purpose, the use of waste materials is of particular interest, provided they meet some permeability and reactivity requirements. In the present study, the use of granite powder, a waste generated during the process of cutting granite, was evaluated as a component of PRB filler, mixed in different proportions with compost. The Cr(VI) adsorption capacity and desorption behaviour of granite powder, pine bark compost, composted municipal solid waste and mixtures containing different proportions of granite powder and compost was compared. Individually, the granite powder was not suitable for use as PRB filler because of its moderate permeability and Cr(VI) adsorption capacity. The addition of pine bark compost increased the hydraulic conductivity and improved the Cr(VI) adsorption capacity of the material, while decreasing Cr desorption. In turn, the addition of compost derived from municipal solid waste did not have the same beneficial effect, as it decreased the hydraulic conductivity of the mixtures and had only slightly improved the adsorption capacity. In summary, mixtures containing 50 or 25% granite powder and 50 or 75% pine bark compost (v/v), respectively, were the best materials for use as a PRB in relation to cost/effectiveness.

2006 ◽  
Vol 9 (1) ◽  
Author(s):  
Jim V. Rouse ◽  
Richard M. Thomasser ◽  
Cathleen A. Terentieff ◽  
Lisa A. Hall

AbstractPreviously, the authors have developed the concept of in-situ reduction of hexavalent chromium in contaminated groundwater, using various forms of active reagent delivery, based on site geohydrological conditions. While these approaches are highly successful and cost effective, in some cases, such active approaches may not be appropriate. Rather, it may be appropriate to limit the spread of chromium contamination by formation of permeable reactive barriers or reactive zones through the borehole placement of aqueous reductants. A passive approach, utilizing bore-hole placed reactive barriers and Monitored Natural Attenuation (MNA), offers real advantages for groundwater remediation, especially in situations involving groundwater in fractured or cavernous bedrock, where the water table is at great depth, or where on-going activities in the source area limit access for more active approaches. A geochemical reactive barrier was used at a South Australian timber preservation facility sited over a cavernous limestone. After remedial activities within the plume achieved significant reduction of the mobile chromium mass, the applicable regulatory agency authorized MNA for control of residual contamination. A phased approach has been utilized at a Central Valley, California timber preservation site, to develop data on the radial spread of reductant injection through diffusion, and the longevity of the effect of such injection, and a full-scale remedial approach designed, recognizing limitations on injection imposed by limited access. The paper discusses the requirements to demonstrate the effectiveness of MNA. Case histories of successful application of the integrated approach of passive reduction and MNA are presented, as a cost-effective and environmentally-protective means of accomplishing remediation of hexavalent chromium in groundwater.


2015 ◽  
Vol 5 ◽  
Author(s):  
Javier Cancelo-González ◽  
Diego Martiñá Prieto ◽  
Remigio Paradelo ◽  
María Teresa Barral

The permeable reactive barrier (PRB) is a technology developed for the removal of contaminants in groundwater. It consists of a screen perpendicular to the flow of contaminated groundwater filled with a material capable of adsorbing, precipitating or degrading pollutants. Several materials have been tested for their use as reactive substrates for the construction of PRBs. Waste materials are of particular interest for this purpose due to the possibility of their reuse and their generally lower cost. With this aim, the Cr (VI) retention capacity of filler material consisting either of pine bark compost (PB) or a 50% mixture of compost and granite powder (PB50) was evaluated using an experimental device specifically designed for this study, which reproduces a permeable reactive barrier at the laboratory scale. Percolation experiments were carried out with a solution of 100 mg L<sup>-1</sup> Cr (VI) in 0.01M KNO<sub>3</sub>, followed by a leaching step with the saline background. The results show that compost is a highly efficient filler for permeable reactive barriers with almost 100% retention of Cr, whereas the retention efficiency of the mixture of PB50 oscillated between 18 and 46% during the experiment. The Cr retained by the filling material is strongly fixed, since no desorption was detected by leaching with the saline background, and concentrations in the standard Toxic Characteristic Leaching Procedure (TCLP) extracts were lower than 1 mg L<sup>-1</sup>. This behaviour minimizes the risk of release of the Cr retained by the material of the barrier in the event of it being traversed by water not contaminated with Cr. Modelling with Visual Minteq indicates that in the experiments with PB, the reduction of Cr (VI) to Cr (III) occurs and that Cr (III) is associated with dissolved organic matter, which is a form of lower toxicity than the initial Cr (VI) species. In turn, in the experiments with PB50, Cr (III) and Cr (VI) coexist and the oxidised form is not associated with dissolved organic matter, which suggests greater toxicity. The results indicate that pine bark compost is a potential candidate for use as filler material permeable reactive barriers.


2019 ◽  
pp. 1-8
Author(s):  
Yingfeng Wang ◽  
Zhenying Zhang ◽  
Hui Xu ◽  
Dazhi Wu ◽  
Xinyu He ◽  
...  

2006 ◽  
Vol 43 (12) ◽  
pp. 1333-1343 ◽  
Author(s):  
Mingliang Xie ◽  
Dirk Aldenkortt ◽  
Jean-Frank Wagner ◽  
Gerhard Rettenberger

A systematic study was undertaken of the granular composition and hydraulic properties of municipal solid waste (MSW) produced by mechanical–biological pretreatment (MBP–MSW) from three different treatment plants with the aim of evaluating the potential application of MBP–MSW as an alternative barrier material for landfill final cover systems. Despite its coarse granular composition, MBP–MSW has low hydraulic conductivity. Long-term permeability tests show that the hydraulic conductivity decreases with time. The most likely explanation for the long-term changes in permeability is the swelling of organic material contained within the compost. In the case of saturated flow, the virtually impermeable plastic fragments embedded in the material impede fluid flow. In the unsaturated case, such fragments slow down the drying process by disrupting fluid flow and allowing pooling of water above horizontally oriented fragments. The larger the number and size of the plastic fragments, the greater the influence on hydraulic conductivity and shrinkage. These processes can be better understood with the newly developed conceptual model, the thin-sheet model. Based on this conceptual model, laboratory tests were undertaken to compare natural soil material with mixtures of soil material and plastic fragments. Corresponding numerical simulations of some experiments verified the influence of plastic fragments on the hydraulic properties of MBP–MSW.Key words: mechanical–biological pretreatment, municipal solid waste (MSW), thin-sheet model, plastic fragment, hydraulic conductivity, drying test.


2016 ◽  
Vol 53 ◽  
pp. 128-135 ◽  
Author(s):  
Yu Wang ◽  
Saraya Pleasant ◽  
Pradeep Jain ◽  
Jon Powell ◽  
Timothy Townsend

2021 ◽  
Vol 13 (19) ◽  
pp. 10927
Author(s):  
Anton Orlov ◽  
Elena Klyuchnikova ◽  
Anna Korppoo

Most municipal solid waste (MSW) in Russia is disposed of in landfills, and only a relatively small fraction is recycled. The landfilling of waste leads to greenhouse gas (GHG) emissions, and air and groundwater pollution. However, recently, there have been some initiatives to improve waste management in the country. We assessed the economic and environmental benefits of waste recycling in the Murmansk region, in which a new waste recycling plant has been operating since 2019. We found that MSW recycling in the Murmansk region has induced a small, positive, job creation effect and could potentially lead to a non-negligible reduction in GHG emissions. Extrapolating the results from this case study to the country level, we found that recycling landfilled MSW in Russia could save approximately 154 million tons of GHG emissions in carbon dioxide equivalents annually, which is comparable to the total CO2 emissions from Algeria. The positive environmental and health-related impacts from the extensive implementation of MSW recycling in the country could be substantial. From this case study, we also learned that one of the biggest challenges for the waste recycling company in the Murmansk region is finding profitable markets for recycled materials. Moreover, due to the high investment and operational costs, recycling MSW led to a substantial increase in communal fees. However, there is potential to make waste recycling more cost effective. Most MSW in the Murmansk region is still separated at the recycling plant, while separating waste at the source could substantially reduce operational costs. Other challenges in the large-scale implementation of MSW recycling in Russia, such as a lack of investments and the population’s willingness to recycle waste, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document