The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration’s benchmark nozzle model

Biorheology ◽  
2021 ◽  
pp. 1-18
Author(s):  
Bryan C. Good

BACKGROUND: Computational fluid dynamics (CFD) is an important tool for predicting cardiovascular device performance. The FDA developed a benchmark nozzle model in which experimental and CFD data were compared, however, the studies were limited by steady flows and Newtonian models. OBJECTIVE: Newtonian and non-Newtonian blood models will be compared under steady and pulsatile flows to evaluate their influence on hemodynamics in the FDA nozzle. METHODS: CFD simulations were validated against the FDA data for steady flow with a Newtonian model. Further simulations were performed using Newtonian and non-Newtonian models under both steady and pulsatile flows. RESULTS: CFD results were within the experimental standard deviations at nearly all locations and Reynolds numbers. The model differences were most evident at Re = 500, in the recirculation regions, and during diastole. The non-Newtonian model predicted blunter upstream velocity profiles, higher velocities in the throat, and differences in the recirculation flow patterns. The non-Newtonian model also predicted a greater pressure drop at Re = 500 with minimal differences observed at higher Reynolds numbers. CONCLUSIONS: An improved modeling framework and validation procedure were used to further investigate hemodynamics in geometries relevant to cardiovascular devices and found that accounting for blood’s non-Newtonian and pulsatile behavior can lead to large differences in predictions in hemodynamic parameters.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Daniel B. Biggs ◽  
Christopher B. Churchill ◽  
John A. Shaw

An experimental program is presented of heated tension springs in an external crossflow over a range of laminar Reynolds numbers, spring stretch ratios, and angles of attack. Extensive measurements of the forced convection heat transfer of helical wire within a wind tunnel reveal an interesting nonmonotonic dependence on angle of attack. Computational fluid dynamics (CFD) simulations, showing good agreement with the experimental data, are used to explore the behavior and gain a better understanding of the observed trends. A dimensionless correlation is developed that well captures the experimental and CFD data and can be used as an efficient computational tool in broader applications.


Author(s):  
Sassan Etemad

Computational fluid dynamics (CFD) simulations have been carried out for the turbulent convective heat transfer, conduction and radiation for metal thermocouple tips, accommodated in hot gas jets to study the measurement accuracy of the thermocouples. The study covers several thermocouple sizes, jet temperatures, and Reynolds numbers. The spherical bead, representing the tip, becomes so hot that it radiates some heat to the colder surrounding surfaces. This phenomenon is responsible for a gap between the jet temperature and the bead temperature. The mentioned temperature difference is significant. It grows both with bead size and gas temperatures but decreases with the Reynolds number.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2197
Author(s):  
Nayara Rodrigues Marques Sakiyama ◽  
Jurgen Frick ◽  
Timea Bejat ◽  
Harald Garrecht

Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


Author(s):  
Mandana S. Saravani ◽  
Saman Beyhaghi ◽  
Ryoichi S. Amano

The present work investigates the effects of buoyancy and density ratio on the thermal performance of a rotating two-pass square channel. The U-bend configuration with smooth walls is selected for this study. The channel has a square cross-section with a hydraulic diameter of 5.08 cm (2 inches). The lengths of the first and second passes are 514 mm and 460 mm, respectively. The turbulent flow enters the channel with Reynolds numbers of up to 34,000. The rotational speed varies from 0 to 600 rpm with the rotational numbers up to 0.75. For this study, two approaches are considered for tracking the buoyancy effect on heat transfer. In the first case, the density ratio is set constant, and the rotational speed is varied. In the second case, the density ratio is changed in the stationary case, and the effect of density ratio is discussed. The range of Buoyancy number along the channel is 0–6. The objective is to investigate the impact of Buoyancy forces on a broader range of rotation number (0–0.75) and Buoyancy number scales (0–6), and their combined effects on heat transfer coefficient for a channel with aspect ratio of 1:1. Several computational fluid dynamics (CFD) simulation are carried out for this study, and some of the results are validated against experimental data.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Guilherme F. Rosetti ◽  
Guilherme Vaz ◽  
André L. C. Fujarra

The flow around circular smooth fixed cylinder in a large range of Reynolds numbers is considered in this paper. In order to investigate this canonical case, we perform CFD calculations and apply verification & validation (V&V) procedures to draw conclusions regarding numerical error and, afterwards, assess the modeling errors and capabilities of this (U)RANS method to solve the problem. Eight Reynolds numbers between Re = 10 and Re=5×105 will be presented with, at least, four geometrically similar grids and five discretization in time for each case (when unsteady), together with strict control of iterative and round-off errors, allowing a consistent verification analysis with uncertainty estimation. Two-dimensional RANS, steady or unsteady, laminar or turbulent calculations are performed. The original 1994 k-ω SST turbulence model by Menter is used to model turbulence. The validation procedure is performed by comparing the numerical results with an extensive set of experimental results compiled from the literature.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Björn Gwiasda ◽  
Matthias Mohr ◽  
Martin Böhle

Suction performance, pressure rise, and efficiency for four different inducers are examined with computational fluid dynamics (CFD) simulations and experiments performed with 18,000 rpm and 24,000 rpm. The studies originate from a research project that includes the construction of a new test bench in order to judge the design of the different inducers. This test bench allows to conduct experiments with a rotational speed of up to 40,000 rpm and high pressure ranges from 0.1 bar to 40 bar with water as working fluid. Experimental results are used to evaluate the accuracy of the simulations and to gain a better understanding of the design parameter. The influence of increasing the rotating speed from 18,000 rpm to 24,000 rpm on the performance is also shown.


2008 ◽  
Vol 5 (28) ◽  
pp. 1291-1301 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

Most theoretical models of unsteady aquatic movement in organisms assume that including steady-state drag force and added mass approximates the hydrodynamic force exerted on an organism's body. However, animals often perform explosively quick movements where high accelerations are realized in a few milliseconds and are followed closely by rapid decelerations. For such highly unsteady movements, the accuracy of this modelling approach may be limited. This type of movement can be found during pivot feeding in pipefish that abruptly rotate their head and snout towards prey. We used computational fluid dynamics (CFD) to validate a simple analytical model of cranial rotation in pipefish. CFD simulations also allowed us to assess prey displacement by head rotation. CFD showed that the analytical model accurately calculates the forces exerted on the pipefish. Although the initial phase of acceleration changes the flow patterns during the subsequent deceleration phase, the accuracy of the analytical model was not reduced during this deceleration phase. Our analysis also showed that prey are left approximately stationary despite the quickly approaching pipefish snout. This suggests that pivot-feeding fish need little or no suction to compensate for the effects of the flow induced by cranial rotation.


Author(s):  
Daniel Barreca ◽  
Matthew Franchek ◽  
Mayank Tyagi

Reliability of blowout preventers (BOP) is central for the safety of both rig workers and the surrounding environment. Analysis of dynamic fluid conditions within the wellbore and BOP can provide quantitative data related to this reliability. In cases of a hard shut in, it is suspected that the sudden closure of rams can cause a water hammer effect, creating pressure vibrations within the wellbore. Additionally, as the blowout preventer reaches a fully closed state, fluid velocity can drastically increase. This results in increased erosion rates within the blowout preventer. To investigate fluid movement and pressure vibrations during a well shut-in, CFD simulations will be conducted. Dynamic meshing techniques within ANSYS® FLUENT can be utilized to simulate closing blowout preventer configurations for both 2-D and 3-D geometries. These simulations would deliver information that could lead to a better understanding of certain performance issues during well shut-ins. Such information includes flow velocity magnitude within the BOP and maximum pressure pulse values within the wellbore.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


Sign in / Sign up

Export Citation Format

Share Document