scholarly journals Causal Reasoning Model Based on Medical Knowledge Graph for Disease Diagnosis

2021 ◽  
Author(s):  
Ze Xu ◽  
Huazhen Wang ◽  
Xiaocong Liu ◽  
Ting He ◽  
Jin Gou

In view of the non-interpretability of disease diagnosis models based on deep learning, a knowledge reasoning model based on medical knowledge graph for intelligent diagnosis is proposed. Given the patient symptom set, the co-occurrence of the patient and the disease is calculated, then the patient suffering from one disease is calculated. Based on the dynamic threshold value, the final disease diagnosis result of the patient is outputted. According to the symptoms of patients and the symptoms in the knowledge graph, the causal reasoning of the disease diagnosis is interpretable. Experiments on 145,712 pediatric electronic medical records in Chinese show that the proposed model can predict diseases with interpretability, and the accuracy reaches-82.12%.

2021 ◽  
Vol 21 (S9) ◽  
Author(s):  
Yinyu Lan ◽  
Shizhu He ◽  
Kang Liu ◽  
Xiangrong Zeng ◽  
Shengping Liu ◽  
...  

Abstract Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the existed knowledge in the KGs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. Methods To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation. Results Experiments results on the publicly authoritative Chinese symptom knowledge graph demonstrated that the proposed method is significantly better than the state-of-the-art path-based knowledge graph reasoning methods, and the average performance is improved by 5.83% for all relations. Conclusions In this paper, we propose two new knowledge graph reasoning algorithms, which adopt textual semantic information of entities and paths and can effectively alleviate the sparsity problem of entities and paths in the MedKGC. As far as we know, it is the first method to use pre-trained language models and text path representations for medical knowledge reasoning. Our method can complete the impaired symptom knowledge graph in an interpretable way, and it outperforms the state-of-the-art path-based reasoning methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wanheng Liu ◽  
Ling Yin ◽  
Cong Wang ◽  
Fulin Liu ◽  
Zhiyu Ni

In this paper, a novel medical knowledge graph in Chinese approach applied in smart healthcare based on IoT and WoT is presented, using deep neural networks combined with self-attention to generate medical knowledge graph to make it more convenient for performing disease diagnosis and providing treatment advisement. Although great success has been made in the medical knowledge graph in recent studies, the issue of comprehensive medical knowledge graph in Chinese appropriate for telemedicine or mobile devices have been ignored. In our study, it is a working theory which is based on semantic mobile computing and deep learning. When several experiments have been carried out, it is demonstrated that it has better performance in generating various types of medical knowledge graph in Chinese, which is similar to that of the state-of-the-art. Also, it works well in the accuracy and comprehensive, which is much higher and highly consisted with the predictions of the theoretical model. It proves to be inspiring and encouraging that our work involving studies of medical knowledge graph in Chinese, which can stimulate the smart healthcare development.


2021 ◽  
Vol 7 ◽  
pp. e667
Author(s):  
Xiaofeng Huang ◽  
Jixin Zhang ◽  
Zisang Xu ◽  
Lu Ou ◽  
Jianbin Tong

Question answering (QA) is a hot field of research in Natural Language Processing. A big challenge in this field is to answer questions from knowledge-dependable domain. Since traditional QA hardly satisfies some knowledge-dependable situations, such as disease diagnosis, drug recommendation, etc. In recent years, researches focus on knowledge-based question answering (KBQA). However, there still exist some problems in KBQA, traditional KBQA is limited by a range of historical cases and takes too much human labor. To address the problems, in this paper, we propose an approach of knowledge graph based question answering (KGQA) method for medical domain, which firstly constructs a medical knowledge graph by extracting named entities and relations between the entities from medical documents. Then, in order to understand a question, it extracts the key information in the question according to the named entities, and meanwhile, it recognizes the questions’ intentions by adopting information gain. The next an inference method based on weighted path ranking on the knowledge graph is proposed to score the related entities according to the key information and intention of a given question. Finally, it extracts the inferred candidate entities to construct answers. Our approach can understand questions, connect the questions to the knowledge graph and inference the answers on the knowledge graph. Theoretical analysis and real-life experimental results show the efficiency of our approach.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 651
Author(s):  
Shengyi Zhao ◽  
Yun Peng ◽  
Jizhan Liu ◽  
Shuo Wu

Crop disease diagnosis is of great significance to crop yield and agricultural production. Deep learning methods have become the main research direction to solve the diagnosis of crop diseases. This paper proposed a deep convolutional neural network that integrates an attention mechanism, which can better adapt to the diagnosis of a variety of tomato leaf diseases. The network structure mainly includes residual blocks and attention extraction modules. The model can accurately extract complex features of various diseases. Extensive comparative experiment results show that the proposed model achieves the average identification accuracy of 96.81% on the tomato leaf diseases dataset. It proves that the model has significant advantages in terms of network complexity and real-time performance compared with other models. Moreover, through the model comparison experiment on the grape leaf diseases public dataset, the proposed model also achieves better results, and the average identification accuracy of 99.24%. It is certified that add the attention module can more accurately extract the complex features of a variety of diseases and has fewer parameters. The proposed model provides a high-performance solution for crop diagnosis under the real agricultural environment.


Author(s):  
Junshu Wang ◽  
Guoming Zhang ◽  
Wei Wang ◽  
Ka Zhang ◽  
Yehua Sheng

AbstractWith the rapid development of hospital informatization and Internet medical service in recent years, most hospitals have launched online hospital appointment registration systems to remove patient queues and improve the efficiency of medical services. However, most of the patients lack professional medical knowledge and have no idea of how to choose department when registering. To instruct the patients to seek medical care and register effectively, we proposed CIDRS, an intelligent self-diagnosis and department recommendation framework based on Chinese medical Bidirectional Encoder Representations from Transformers (BERT) in the cloud computing environment. We also established a Chinese BERT model (CHMBERT) trained on a large-scale Chinese medical text corpus. This model was used to optimize self-diagnosis and department recommendation tasks. To solve the limited computing power of terminals, we deployed the proposed framework in a cloud computing environment based on container and micro-service technologies. Real-world medical datasets from hospitals were used in the experiments, and results showed that the proposed model was superior to the traditional deep learning models and other pre-trained language models in terms of performance.


Sign in / Sign up

Export Citation Format

Share Document