scholarly journals Automated Repair of Process Models with Non-local Constraints Using State-Based Region Theory

2022 ◽  
Vol 183 (3-4) ◽  
pp. 293-317
Author(s):  
Anna Kalenkova ◽  
Josep Carmona ◽  
Artem Polyvyanyy ◽  
Marcello La Rosa

State-of-the-art process discovery methods construct free-choice process models from event logs. Consequently, the constructed models do not take into account indirect dependencies between events. Whenever the input behaviour is not free-choice, these methods fail to provide a precise model. In this paper, we propose a novel approach for enhancing free-choice process models by adding non-free-choice constructs discovered a-posteriori via region-based techniques. This allows us to benefit from the performance of existing process discovery methods and the accuracy of the employed fundamental synthesis techniques. We prove that the proposed approach preserves fitness with respect to the event log while improving the precision when indirect dependencies exist. The approach has been implemented and tested on both synthetic and real-life datasets. The results show its effectiveness in repairing models discovered from event logs.

2012 ◽  
Vol 37 (7) ◽  
pp. 654-676 ◽  
Author(s):  
Jochen De Weerdt ◽  
Manu De Backer ◽  
Jan Vanthienen ◽  
Bart Baesens

Process models are the analytical illustration of an organization’s activity. They are very primordial to map out the current business process of an organization, build a baseline of process enhancement and construct future processes where the enhancements are incorporated. To achieve this, in the field of process mining, algorithms have been proposed to build process models using the information recorded in the event logs. However, for complex process configurations, these algorithms cannot correctly build complex process structures. These structures are invisible tasks, non-free choice constructs, and short loops. The ability of each discovery algorithm in discovering the process constructs is different. In this work, we propose a framework responsible of detecting from event logs the complex constructs existing in the data. By identifying the existing constructs, one can choose the process discovery techniques suitable for the event data in question. The proposed framework has been implemented in ProM as a plugin. The evaluation results demonstrate that the constructs can correctly be identified.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


2020 ◽  
Vol 19 (6) ◽  
pp. 1415-1441
Author(s):  
Cristina Cabanillas ◽  
Lars Ackermann ◽  
Stefan Schönig ◽  
Christian Sturm ◽  
Jan Mendling

Abstract Automated process discovery is a technique that extracts models of executed processes from event logs. Logs typically include information about the activities performed, their timestamps and the resources that were involved in their execution. Recent approaches to process discovery put a special emphasis on (human) resources, aiming at constructing resource-aware process models that contain the inferred resource assignment constraints. Such constraints can be complex and process discovery approaches so far have missed the opportunity to represent expressive resource assignments graphically together with process models. A subsequent verification of the extracted resource-aware process models is required in order to check the proper utilisation of resources according to the resource assignments. So far, research on discovering resource-aware process models has assumed that models can be put into operation without modification and checking. Integrating resource mining and resource-aware process model verification faces the challenge that different types of resource assignment languages are used for each task. In this paper, we present an integrated solution that comprises (i) a resource mining technique that builds upon a highly expressive graphical notation for defining resource assignments; and (ii) automated model-checking support to validate the discovered resource-aware process models. All the concepts reported in this paper have been implemented and evaluated in terms of feasibility and performance.


2018 ◽  
Vol 7 (4) ◽  
pp. 2446
Author(s):  
Muktikanta Sahu ◽  
Rupjit Chakraborty ◽  
Gopal Krishna Nayak

Building process models from the available data in the event logs is the primary objective of Process discovery. Alpha algorithm is one of the popular algorithms accessible for ascertaining a process model from the event logs in process mining. The steps involved in the Alpha algorithm are computationally rigorous and this problem further manifolds with the exponentially increasing event log data. In this work, we have exploited task parallelism in the Alpha algorithm for process discovery by using MPI programming model. The proposed work is based on distributed memory parallelism available in MPI programming for performance improvement. Independent and computationally intensive steps in the Alpha algorithm are identified and task parallelism is exploited. The execution time of serial as well as parallel implementation of Alpha algorithm are measured and used for calculating the extent of speedup achieved. The maximum and minimum speedups obtained are 3.97x and 3.88x respectively with an average speedup of 3.94x.


2014 ◽  
Vol 23 (01) ◽  
pp. 1440001 ◽  
Author(s):  
J. C. A. M. Buijs ◽  
B. F. van Dongen ◽  
W. M. P. van der Aalst

Process discovery algorithms typically aim at discovering process models from event logs that best describe the recorded behavior. Often, the quality of a process discovery algorithm is measured by quantifying to what extent the resulting model can reproduce the behavior in the log, i.e. replay fitness. At the same time, there are other measures that compare a model with recorded behavior in terms of the precision of the model and the extent to which the model generalizes the behavior in the log. Furthermore, many measures exist to express the complexity of a model irrespective of the log.In this paper, we first discuss several quality dimensions related to process discovery. We further show that existing process discovery algorithms typically consider at most two out of the four main quality dimensions: replay fitness, precision, generalization and simplicity. Moreover, existing approaches cannot steer the discovery process based on user-defined weights for the four quality dimensions.This paper presents the ETM algorithm which allows the user to seamlessly steer the discovery process based on preferences with respect to the four quality dimensions. We show that all dimensions are important for process discovery. However, it only makes sense to consider precision, generalization and simplicity if the replay fitness is acceptable.


Author(s):  
Yutika Amelia Effendi ◽  
Nania Nuzulita

Background: Nowadays, enterprise computing manages business processes which has grown up rapidly. This situation triggers the production of a massive event log. One type of event log is double timestamp event log. The double timestamp has a start time and complete time of each activity executed in the business process. It also has a close relationship with temporal causal relation. The temporal causal relation is a pattern of event log that occurs from each activity performed in the process.Objective: In this paper, seven types of temporal causal relation between activities were presented as an extended version of relations used in the double timestamp event log. Since the event log was not always executed sequentially, therefore using temporal causal relation, the event log was divided into several small groups to determine the relations of activities and to mine the business process.Methods: In these experiments, the temporal causal relation based on time interval which were presented in Gantt chart also determined whether each case could be classified as sequential or parallel relations. Then to obtain the business process, each temporal causal relation was combined into one business process based on the timestamp of activity in the event log.Results: The experimental results, which were implemented in two real-life event logs, showed that using temporal causal relation and double timestamp event log could discover business process models.Conclusion: Considering the findings, this study concludes that business process models and their sequential and parallel AND, OR, XOR relations can be discovered by using temporal causal relation and double timestamp event log.Keywords:Business Process, Process Discovery, Process Mining, Temporal Causal Relation, Double Timestamp Event Log


Author(s):  
Ghazaleh Khodabandelou ◽  
Charlotte Hug ◽  
Camille Salinesi

Intentions play a key role in information systems engineering. Research on process modeling has highlighted that specifying intentions can expressly mitigate many problems encountered in process modeling as lack of flexibility or adaptation. Process mining approaches mine processes in terms of tasks and branching. To identify and formalize intentions from event logs, this work presents a novel approach of process mining, called Map Miner Method (MMM). This method automates the construction of intentional process models from event logs. First, MMM estimates users' strategies (i.e., the different ways to fulfill the intentions) in terms of their activities. These estimated strategies are then used to infer users' intentions at different levels of abstraction using two tailored algorithms. MMM constructs intentional process models with respect to the Map metamodel formalism. MMM is applied on a real-world dataset, i.e. event logs of developers of Eclipse UDC (Usage Data Collector). The resulting Map process model provides a precious understanding of the processes followed by the developers, and also provide feedback on the effectiveness and demonstrate scalability of MMM.


2020 ◽  
Vol 175 (1-4) ◽  
pp. 1-40
Author(s):  
Wil M.P. van der Aalst ◽  
Alessandro Berti

Techniques to discover Petri nets from event data assume precisely one case identifier per event. These case identifiers are used to correlate events, and the resulting discovered Petri net aims to describe the life-cycle of individual cases. In reality, there is not one possible case notion, but multiple intertwined case notions. For example, events may refer to mixtures of orders, items, packages, customers, and products. A package may refer to multiple items, multiple products, one order, and one customer. Therefore, we need to assume that each event refers to a collection of objects, each having a type (instead of a single case identifier). Such object-centric event logs are closer to data in real-life information systems. From an object-centric event log, we want to discover an object-centric Petri net with places that correspond to object types and transitions that may consume and produce collections of objects of different types. Object-centric Petri nets visualize the complex relationships among objects from different types. This paper discusses a novel process discovery approach implemented in PM4Py. As will be demonstrated, it is indeed feasible to discover holistic process models that can be used to drill-down into specific viewpoints if needed.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Si-Yuan Jing

Evolutionary algorithm is an effective way to solve process discovery problem which aims to mine process models from event logs which are consistent with the real business processes. However, current evolutionary algorithms, such as GeneticMiner, ETM, and ProDiGen, converge slowly and in difficultly because all of them employ genetic crossover and mutation which have strong randomness. This paper proposes a hybrid evolutionary algorithm for automated process discovery, which consists of a set-based differential evolution algorithm and guided local exploration. There are three major innovations in this work. First of all, a hybrid evolutionary strategy is proposed, in which a differential evolution algorithm is employed to search the solution space and rapidly approximate the optimal solution firstly, and then a specific local exploration method joins to help the algorithm skip out the local optimum. Secondly, two novel set-based differential evolution operators are proposed, which can efficiently perform differential mutation and crossover on the causal matrix. Thirdly, a fine-grained evaluation technique is designed to assign score to each node in a process model, which is employed to guide the local exploration and improve the efficiency of the algorithm. Experiments were performed on 68 different event logs, including 22 artificial event logs, 44 noisy event logs, and two real event logs. Moreover, the proposed algorithm was compared with three popular algorithms of process discovery. Experimental results show that the proposed algorithm can achieve good performance and its converge speed is fast.


Sign in / Sign up

Export Citation Format

Share Document