CNN-SVM based vehicle detection for UAV platform

Author(s):  
Najiya K. Valappil ◽  
Qurban A. Memon

Conventional surveillance devices are deployed at fixed locations on road sideways, poles or on traffic lights, which provide a constant and fixed surveillance view of the urban traffic. Unmanned aerial vehicles (UAVs) have for last two decades received considerable attention in building smart and effective system with wider coverage using low cost, highly flexible unmanned platform for smart city infrastructure. Unlike fixed monitoring devices, the camera platform of aerial vehicles has many constraints, as it is in constant motion including titling and panning, and thus makes it difficult to process data for real time applications. The inaccuracy in object detection rates from UAV videos has motivated the research community to combine different approaches such as optical flow and supervised learning algorithms. The method proposed in this research incorporates steps that include Kanade-Lucas optical flow method for moving object detection, building connected graphs to isolate objects and convolutional neural network (CNN), followed by support vector machine (SVM) for final classification. The generated optical flow contains background (and tiny) objects detected as vehicle as the camera platform moves. The classifier introduced here rules out the presence of any other (moving) objects to be detected as vehicles. The methodology adopted is tested on a stationary and moving aerial videos. The system is shown to have performance accuracy of 100% in case of stationary video and 98% in case of video from aerial platform.

2018 ◽  
Vol 06 (04) ◽  
pp. 267-275
Author(s):  
Ajay Shankar ◽  
Mayank Vatsa ◽  
P. B. Sujit

Development of low-cost robots with the capability to detect and avoid obstacles along their path is essential for autonomous navigation. These robots have limited computational resources and payload capacity. Further, existing direct range-finding methods have the trade-off of complexity against range. In this paper, we propose a vision-based system for obstacle detection which is lightweight and useful for low-cost robots. Currently, monocular vision approaches used in the literature suffer from various environmental constraints such as texture and color. To mitigate these limitations, a novel algorithm is proposed, termed as Pyramid Histogram of Oriented Optical Flow ([Formula: see text]-HOOF), which distinctly captures motion vectors from local image patches and provides a robust descriptor capable of discriminating obstacles from nonobstacles. A support vector machine (SVM) classifier that uses [Formula: see text]-HOOF for real-time obstacle classification is utilized. To avoid obstacles, a behavior-based collision avoidance mechanism is designed that updates the probability of encountering an obstacle while navigating. The proposed approach depends only on the relative motion of the robot with respect to its surroundings, and therefore is suitable for both indoor and outdoor applications and has been validated through simulated and hardware experiments.


Author(s):  
K.Ranga Narayana, Et. al.

In present scenario, tracking of target in videos with low resolution is most important task.  The problem aroused due to lack of discriminatory data that have low visual visibility of the moving objects. However, earlier detection methods often extract explanations around fascinating points of space or exclude mathematical features in moving regions, resulting in limited capabilities to detect better video functions. To overcome the above problem, in this paper a novel method which recognizes a person from low resolution videos is proposed. A Three step process is implemented in which during the first step, the video data acquired from a low-resolution video i.e. from three different datasets. The acquired video is divided into frames and converted into gray scale from RGB. Secondly, background subtraction is performed using LBP and thereafter Histogram of Optical Flow (HOF) descriptors is extracted from optical flow images for motion estimation. In the third step, the eigen features are extracted and optimized using particle swarm optimization (PSO) model to eliminate redundant information and obtain optimized features from the video which is being processed. Finally to find a person from low resolution videos, the features are classified by Support Vector Machine (SVM) and parameters are evaluated. Experimental results are performed on VIRAT, Soccer and KTH datasets and demonstrated that the proposed detection approach is superior to the previous method


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Pengcheng Han ◽  
Junping Du ◽  
Jun Zhou ◽  
Suguo Zhu

We propose a new computational intelligence method using wavelet optical flow and hybrid linear-nonlinear classifier for object detection. With the existing optical flow methods, it is difficult to accurately estimate moving objects with diverse speeds. We propose a wavelet-based optical flow method, which uses wavelet decomposition in optical flow motion estimation. The algorithm can accurately detect moving objects with variable speeds in a scene. In addition, we use the hybrid linear-nonlinear classifier (HLNLC) to classify moving objects and static background. HLNLC transforms a nonoptimal scalar variable into its likelihood ratio and uses a scalar quantity as the decision variable. This approach is appropriate for the classification of optical flow feature vectors with unequal variance matrices. The experimental results confirm that our proposed object detection method has an improved accuracy and computation efficiency over other state-of-the-art methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
MingFang Zhang ◽  
Rui Fu ◽  
YingShi Guo ◽  
Li Wang

Moving object classification is essential for autonomous vehicle to complete high-level tasks like scene understanding and motion planning. In this paper, we propose a novel approach for classifying moving objects into four classes of interest using 3D point cloud in urban traffic environment. Unlike most existing work on object recognition which involves dense point cloud, our approach combines extensive feature extraction with the multiframe classification optimization to solve the classification task when partial occlusion occurs. First, the point cloud of moving object is segmented by a data preprocessing procedure. Then, the efficient features are selected via Gini index criterion applied to the extended feature set. Next, Bayes Decision Theory (BDT) is employed to incorporate the preliminary results from posterior probability Support Vector Machine (SVM) classifier at consecutive frames. The point cloud data acquired from our own LIDAR as well as public KITTI dataset is used to validate the proposed moving object classification method in the experiments. The results show that the proposed SVM-BDT classifier based on 18 selected features can effectively recognize the moving objects.


Author(s):  
Salomon Wollenstein-Betech ◽  
Christos G. Cassandras ◽  
Ioannis Ch. Paschalidis

Background: The rapid global spread of the virus SARS-CoV-2 has provoked a spike in demand for hospital care. Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions on how to best allocate very limited medical resources have come to the forefront. Specifically, under consideration are decisions on who to test, who to admit into hospitals, who to treat in an Intensive Care Unit (ICU), and who to support with a ventilator. Given today's ability to gather, share, analyze and process data, personalized predictive models based on demographics and information regarding prior conditions can be used to (1) help decision-makers allocate limited resources, when needed, (2) advise individuals how to better protect themselves given their risk profile, (3) differentiate social distancing guidelines based on risk, and (4) prioritize vaccinations once a vaccine becomes available. Objective: To develop personalized models that predict the following events: (1) hospitalization, (2) mortality, (3) need for ICU, and (4) need for a ventilator. To predict hospitalization, it is assumed that one has access to a patient's basic preconditions, which can be easily gathered without the need to be at a hospital. For the remaining models, different versions developed include different sets of a patient's features, with some including information on how the disease is progressing (e.g., diagnosis of pneumonia). Materials and Methods: Data from a publicly available repository, updated daily, containing information from approximately 91,000 patients in Mexico were used. The data for each patient include demographics, prior medical conditions, SARS-CoV-2 test results, hospitalization, mortality and whether a patient has developed pneumonia or not. Several classification methods were applied, including robust versions of logistic regression, and support vector machines, as well as random forests and gradient boosted decision trees. Results: Interpretable methods (logistic regression and support vector machines) perform just as well as more complex models in terms of accuracy and detection rates, with the additional benefit of elucidating variables on which the predictions are based. Classification accuracies reached 61%, 76%, 83%, and 84% for predicting hospitalization, mortality, need for ICU and need for a ventilator, respectively. The analysis reveals the most important preconditions for making the predictions. For the four models derived, these are: (1) for hospitalization: age, gender, chronic renal insufficiency, diabetes, immunosuppression; (2) for mortality: age, SARS-CoV-2 test status, immunosuppression and pregnancy; (3) for ICU need: development of pneumonia (if available), cardiovascular disease, asthma, and SARS-CoV-2 test status; and (4) for ventilator need: ICU and pneumonia (if available), age, gender, cardiovascular disease, obesity, pregnancy, and SARS-CoV-2 test result.


2020 ◽  
Vol 9 (1) ◽  
pp. 2526-2534

This paper principally combines ideas of laptop vision, machine learning and deep learning for correct detection of traffic lights and their classifications. It checks for each circular and arrow stoplight cases. Color filtering and blob discover ion area unit principally to detect the candidates (traffic lights) [6]. Then, a PCA network is employed as a multiclass classifier which provides the result sporadically. MOT will used for more trailing method and prediction filters out false positives. Sometimes, vote theme can even be used rather than MOT. This method will be simply fitted into ADAS vehicles once hardware thinks about. Recognition is as vital as detective work the traffic lights. While not recognition, no full data will be transmitted [2]. Many complicated TLR’s will give advance functions like observing the most the most for a specific route (when there's quite one) and the way removed from the driving force [3]. Deep learning is additionally one among the rising techniques for analysis areas [7]. Object detection comes as associate integral a part of laptop vision. Object detection will be best utilized in create estimation, vehicle detection, police work etc. In detection algorithms, we tend to incline to draw a bounding box round the object of interest to find it among the image. Also, the drawing of the bounding box isn't distinctive and might hyperbolically looking on the need [9].


2019 ◽  
Vol 8 (3) ◽  
pp. 5740-5745

Background reckoning and the foreground, play prominent roles in the tasks of visual detection and tracking of objects. Moving Object Detection has been widely used in sundry discipline such as intelligent systems, security systems, video monitoring systems, banking places, provisionary systems, and so on. In this paper proposes moving objects detection and tracking method based on Embedded Video Surveillance. The method is based on using lines computed by a gradient-based optical flow and an edge detector gradient-based optical flow and edges are well matched for accurate computation of velocity, not much attention is paid to creating systems for tracking objects using this feature. The proposed method is compared with a recent work, proving its superior performance and when we want to represent high quality videos and images with, lower bit rate, and also suitable for real-world live video applications. This method reduces influences of foreground objects to the background model. The simulation results show that the background image can be obtained precisely and the moving objects recognition is achieved effectively


Author(s):  
Mangesh Chitnis ◽  
Claudio Salvadori ◽  
Matteo Petracca ◽  
Paolo Pagano ◽  
Giuseppe Lipari ◽  
...  

In this chapter, we present an innovative technique of line sensor based image capturing and processing in order to detect moving objects such as vehicles. Line Sensor techniques, when used in MWSN, may achieve faster processing results with much less storage and bandwidth requirements while conserving node energy. Line Sensor based processing algorithms provide novel ways for object counting, classification and speed measurement. This solution presents itself as an ideal low-cost candidate for Intelligent Transport Systems (ITS) to monitor and control urban traffic.


Sign in / Sign up

Export Citation Format

Share Document