AbstractUrban traffic congestion and crashes have been considered by city planners as critical challenges to the economic development of the city. Traffic signal coordination, which connects a series of signals along an arterial by various coordination methodologies, has been proved as one of the most cost-effective means of reducing traffic congestion. In this regard, Metropolitan Planning Organizations (MPO) or Transportation Management Centers (TMC) have included signal timing coordination in their strategic plans. Nevertheless, concerns on the safety effects of traffic signal coordination have been continuously raised by both transportation agencies and the public. This is mainly because signal coordination may increase the travel speed along an arterial, which increases the risk and severity of traffic collisions. To date, there is neither solid evidence from the field to support the concern, nor theoretical-level models to analyze this issue. This research aims to investigate the effects of traffic signal coordination on the safety performance of urban arterials through microsimulation modeling of two traffic operational conditions: free signal operation and coordinated signals, respectively. Three urban arterials in Reno, Nevada were selected as the simulation testbed and were coded in the PTV VISSIM software. The simulated trajectory data were analyzed by the Surrogate Safety Assessment Model (SSAM) to estimate the number of traffic conflicts. Sensitivity analyses were conducted for various traffic demand levels. Results show that under unsaturated conditions, traffic signal coordination could reduce the number of conflicts in comparison with the free signal operation condition. However, under oversaturated conditions, no significant difference was found between coordinated and free signal operations. Findings from this research indicate that traffic signal coordination has the potential to reduce the risk of crashes on urban arterials under unsaturated conditions.