Sex Differences in Locus Coeruleus: A Heuristic Approach That May Explain the Increased Risk of Alzheimer’s Disease in Females

2021 ◽  
pp. 1-18
Author(s):  
Alison M. Luckey ◽  
Ian H. Robertson ◽  
Brian Lawlor ◽  
Anusha Mohan ◽  
Sven Vanneste

This article aims to reevaluate our approach to female vulnerability to Alzheimer’s disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOE ɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.

2018 ◽  
Vol 8 (9) ◽  
pp. 163 ◽  
Author(s):  
Caroline Gurvich ◽  
Kate Hoy ◽  
Natalie Thomas ◽  
Jayashri Kulkarni

Hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function have multiple effects on the development, maintenance and function of the brain. Sex differences in cognitive functioning have been reported in both health and disease, which may be partly attributed to sex hormones. The aim of the current paper was to provide a theoretical review of how sex hormones influence cognitive functioning across the lifespan as well as provide an overview of the literature on sex differences and the role of sex hormones in cognitive decline, specifically in relation to Alzheimer’s disease (AD). A summary of current hormone and sex-based interventions for enhancing cognitive functioning and/or reducing the risk of Alzheimer’s disease is also provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph H. Lee ◽  
Susan Gurney ◽  
Deborah Pang ◽  
Alexis Temkin ◽  
Naeun Park ◽  
...  

Background/Aims. Genetic variants that affect estrogen activity may influence the risk of Alzheimer's disease (AD). In women with Down syndrome, we examined the relation of polymorphisms in hydroxysteroid-17beta-dehydrogenase (HSD17B1) to age at onset and risk of AD.HSD17B1encodes the enzyme 17β-hydroxysteroid dehydrogenase (HSD1), which catalyzes the conversion of estrone to estradiol.Methods. Two hundred and thirty-eight women with DS, nondemented at baseline, 31–78 years of age, were followed at 14–18-month intervals for 4.5 years. Women were genotyped for 5 haplotype-tagging single-nucleotide polymorphisms (SNPs) in theHSD17B1gene region, and their association with incident AD was examined.Results. Age at onset was earlier, and risk of AD was elevated from two- to threefold among women homozygous for the minor allele at 3 SNPs in intron 4 (rs676387), exon 6 (rs605059), and exon 4 inCOASY(rs598126). Carriers of the haplotype TCC, based on the risk alleles for these three SNPs, had an almost twofold increased risk of developing AD (hazard ratio = 1.8, 95% CI, 1.1–3.1).Conclusion. These findings support experimental and clinical studies of the neuroprotective role of estrogen.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Bruno Alexandre Quadros Gomes ◽  
João Paulo Bastos Silva ◽  
Camila Fernanda Rodrigues Romeiro ◽  
Sávio Monteiro dos Santos ◽  
Caroline Azulay Rodrigues ◽  
...  

Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder of the cortex and hippocampus, which eventually leads to cognitive impairment. Although the etiology of AD remains unclear, the presence ofβ-amyloid (Aβ) peptides in these learning and memory regions is a hallmark of AD. Therefore, the inhibition of Aβpeptide aggregation has been considered the primary therapeutic strategy for AD treatment. Many studies have shown that resveratrol has antioxidant, anti-inflammatory, and neuroprotective properties and can decrease the toxicity and aggregation of Aβpeptides in the hippocampus of AD patients, promote neurogenesis, and prevent hippocampal damage. In addition, the antioxidant activity of resveratrol plays an important role in neuronal differentiation through the activation of silent information regulator-1 (SIRT1). SIRT1 plays a vital role in the growth and differentiation of neurons and prevents the apoptotic death of these neurons by deacetylating and repressing p53 activity; however, the exact mechanisms remain unclear. Resveratrol also has anti-inflammatory effects as it suppresses M1 microglia activation, which is involved in the initiation of neurodegeneration, and promotes Th2 responses by increasing anti-inflammatory cytokines and SIRT1 expression. This review will focus on the antioxidant and anti-inflammatory neuroprotective effects of resveratrol, specifically on its role in SIRT1 and the association with AD pathophysiology.


2020 ◽  
Vol 78 (4) ◽  
pp. 1707-1719
Author(s):  
Biancamaria Guarnieri ◽  
Michelangelo Maestri ◽  
Federico Cucchiara ◽  
Annalisa Lo Gerfo ◽  
Alessandro Schirru ◽  
...  

Background: Circadian and sleep disturbances are associated with increased risk of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Wearable activity trackers could provide a new approach in diagnosis and prevention. Objective: To evaluate sleep and circadian rhythm parameters, through wearable activity trackers, in MCI and AD patients as compared to controls, focusing on sex dissimilarities. Methods: Based on minute level data from consumer wearable devices, we analyzed actigraphic sleep parameters by applying an electromedical type I registered algorithm, and the corresponding circadian variables in 158 subjects: 86 females and 72 males (42 AD, 28 MCI, and 88 controls). Moreover, we used a confusion-matrix chart method to assess accuracy, precision, sensitivity, and specificity of two decision-tree models based on actigraphic data in predicting disease or health status. Results: Wake after sleep onset (WASO) was higher (p < 0.001) and sleep efficiency (SE) lower (p = 0.003) in MCI, and Sleep Regularity Index (SRI) was lower in AD patients compared to controls (p = 0.004). SE was lower in male AD compared to female AD (p = 0.038) and SRI lower in male AD compared to male controls (p = 0.008), male MCI (p = 0.047), but also female AD subjects (p = 0.046). Mesor was significantly lower in males in the overall population. Age reduced the dissimilarities for WASO and SE but demonstrated sex differences for amplitude (p = 0.009) in the overall population, controls (p = 0.005), and AD subjects (p = 0.034). The confusion-matrices showed good predictive power of actigraphic data. Conclusion: Actigraphic data could help identify disease or health status. Sex (possibly gender) differences could impact on neurodegeneration and disease trajectory with potential clinical applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Giulia Sita ◽  
Patrizia Hrelia ◽  
Andrea Tarozzi ◽  
Fabiana Morroni

ATP-binding cassette (ABC) transporters, in particular P-glycoprotein (encoded by ABCB1), are important and selective elements of the blood-brain barrier (BBB), and they actively contribute to brain homeostasis. Changes in ABCB1 expression and/or function at the BBB may not only alter the expression and function of other molecules at the BBB but also affect brain environment. Over the last decade, a number of reports have shown that ABCB1 actively mediates the transport of beta amyloid (Aβ) peptide. This finding has opened up an entirely new line of research in the field of Alzheimer’s disease (AD). Indeed, despite intense research efforts, AD remains an unsolved pathology and effective therapies are still unavailable. Here, we review the crucial role of ABCB1 in the Aβtransport and how oxidative stress may interfere with this process. A detailed understanding of ABCB1 regulation can provide the basis for improved neuroprotection in AD and also enhanced therapeutic drug delivery to the brain.


2020 ◽  
Author(s):  
Erin Sundermann ◽  
Matthew S. Panizzon ◽  
Xu Chen ◽  
Murray Andrews ◽  
Douglas Galasko ◽  
...  

Abstract Women show greater pathological Tau biomarkers than men along the Alzheimer’s disease (AD) continuum, particularly among apolipoprotein ε-E4 (APOE4) carriers; however, the reason for this sex difference in unknown. Sex differences often indicate an underlying role of sex hormones. We examined whether testosterone levels might influence this sex difference and the modifying role of APOE4 status. Analyses included 172 participants (25 cognitively normal, 97 mild cognitive impairment, 50 AD participants) from the Alzheimer’s Disease Neuroimaging Initiative (34% female, 54% APOE4+, aged 55–90). We examined the separate and interactive effects of plasma testosterone levels and APOE4 on cerebrospinal fluid phosphorylated-tau181 (p-Tau) levels in the overall sample, and the sex difference in p-Tau levels before and after adjusting for testosterone. A significant APOE4-by-testosterone interaction revealed that lower testosterone levels related to higher p-Tau levels among APOE4 carriers regardless of sex. As expected, women had higher p-Tau levels than men among APOE4 carriers only, yet this difference was eliminated upon adjustment for testosterone. Results suggest that testosterone is protective against p-Tau particularly among APOE4 carriers. The lower testosterone levels that typically characterize women may predispose them to pathological Tau, particularly among female APOE4 carriers.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2347
Author(s):  
Anna Atlante ◽  
Giuseppina Amadoro ◽  
Antonella Bobba ◽  
Valentina Latina

A new epoch is emerging with intense research on nutraceuticals, i.e., “food or food product that provides medical or health benefits including the prevention and treatment of diseases”, such as Alzheimer’s disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota–gut–brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.


2020 ◽  
Author(s):  
Martin J. Dahl ◽  
Mara Mather ◽  
Markus Werkle-Bergner ◽  
Briana L. Kennedy ◽  
Yuchuan Qiao ◽  
...  

AbstractAbnormally phosphorylated tau, an indicator of Alzheimer’s disease, begins to accumulate in the first decades of life in the locus coeruleus (LC), the primary source of cortical norepinephrine. Ensuing dysfunction in noradrenergic neuromodulation is hypothesized to contribute to Alzheimer’s progression. However, research into the role of the LC has been impeded by a lack of effective ways of assessing it in vivo. Advances in high-resolution brainstem magnetic resonance imaging (MRI) hold potential to investigate the association of locus coeruleus integrity and Alzheimer’s-related neuropathological markers in vivo.Leveraging a meta-analytical approach, we first synthesized LC localizations and dimensions across previously published studies to improve the reliability and validity of MR-based locus coeruleus detection. Next, we applied this refined volume of interest to determine whether MR-indexed LC integrity can serve as a marker for noradrenergic degeneration in early-onset Alzheimer’s disease. Eighteen participants (34.7±10.1 years; 9♀) with or known to be at-risk for mutations in genes associated with autosomal-dominant Alzheimer’s disease (ADAD) were investigated. Genotyping confirmed mutations in seven participants (PSEN1, n = 6; APP, n = 1), of which four were symptomatic. Participants underwent 3T-MRI, flortaucipir positron emission tomography (PET), and cognitive testing. LC MRI intensity, a non-invasive proxy for neuronal density, was semi-automatically extracted from high-resolution brainstem scans across the rostrocaudal extent of the nucleus.Relative to healthy controls, symptomatic participants showed lower LC intensity. This effect was pronounced in rostral segments of the nucleus that project to the mediotemporal lobe and other memory-relevant areas. Among carriers of ADAD-causing mutations, closer proximity to the mutation-specific median age of dementia diagnosis was associated with lower LC intensity. Leveraging a multivariate statistical approach, we revealed a pattern of LC-related tau pathology in occipito-temporo-parietal brain regions. Finally, higher locus intensity was closely linked to memory performance across a variety of neuropsychological tests.Our finding of diminished MR-indexed LC integrity in autosomal-dominant Alzheimer’s disease suggest a role of the noradrenergic system in this neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document