Alzheimer s Research & Therapy
Latest Publications


TOTAL DOCUMENTS

1134
(FIVE YEARS 485)

H-INDEX

67
(FIVE YEARS 16)

Published By Springer (Biomed Central Ltd.)

1758-9193, 1758-9193

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Peter Hermann ◽  
Anna Villar-Piqué ◽  
Matthias Schmitz ◽  
Christian Schmidt ◽  
Daniela Varges ◽  
...  

Abstract Background Lipocalin-2 is a glycoprotein that is involved in various physiological and pathophysiological processes. In the brain, it is expressed in response to vascular and other brain injury, as well as in Alzheimer’s disease in reactive microglia and astrocytes. Plasma Lipocalin-2 has been proposed as a biomarker for Alzheimer’s disease but available data is scarce and inconsistent. Thus, we evaluated plasma Lipocalin-2 in the context of Alzheimer’s disease, differential diagnoses, other biomarkers, and clinical data. Methods For this two-center case-control study, we analyzed Lipocalin-2 concentrations in plasma samples from a cohort of n = 407 individuals. The diagnostic groups comprised Alzheimer’s disease (n = 74), vascular dementia (n = 28), other important differential diagnoses (n = 221), and healthy controls (n = 84). Main results were validated in an independent cohort with patients with Alzheimer’s disease (n = 19), mild cognitive impairment (n = 27), and healthy individuals (n = 28). Results Plasma Lipocalin-2 was significantly lower in Alzheimer’s disease compared to healthy controls (p < 0.001) and all other groups (p < 0.01) except for mixed dementia (vascular and Alzheimer’s pathologic changes). Areas under the curve from receiver operation characteristics for the discrimination of Alzheimer’s disease and healthy controls were 0.783 (95%CI: 0.712–0.855) in the study cohort and 0.766 (95%CI: 0.627–0.905) in the validation cohort. The area under the curve for Alzheimer’s disease versus vascular dementia was 0.778 (95%CI: 0.667–0.890) in the study cohort. In Alzheimer’s disease patients, plasma Lipocalin2 did not show significant correlation with cerebrospinal fluid biomarkers of neurodegeneration and AD-related pathology (total-tau, phosphorylated tau protein, and beta-amyloid 1-42), cognitive status (Mini Mental Status Examination scores), APOE genotype, or presence of white matter hyperintensities. Interestingly, Lipocalin 2 was lower in patients with rapid disease course compared to patients with non-rapidly progressive Alzheimer’s disease (p = 0.013). Conclusions Plasma Lipocalin-2 has potential as a diagnostic biomarker for Alzheimer’s disease and seems to be independent from currently employed biomarkers.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Tosca O. E. de Crom ◽  
Sanne S. Mooldijk ◽  
M. Kamran Ikram ◽  
M. Arfan Ikram ◽  
Trudy Voortman

Abstract Background Adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet has been linked to a decreased risk of dementia, but reverse causality and residual confounding by lifestyle may partly account for this link. We aimed to address these issues by studying the associations over cumulative time periods, which may provide insight into possible reverse causality, and by using both historical and more contemporary dietary data as this could give insight into confounding since historical data may be less affected by lifestyle factors. Methods In the population-based Rotterdam Study, dietary intake was assessed using validated food frequency questionnaires in 5375 participants between 1989 and 1993 (baseline I) and in a largely non-overlapping sample in 2861 participants between 2009 and 2013 (baseline II). We calculated the MIND diet score and studied its association with the risk of all-cause dementia, using Cox models. Incident all-cause dementia was recorded until 2018. Results During a mean follow-up of 15.6 years from baseline I, 1188 participants developed dementia. A higher MIND diet score at baseline I was associated with a lower risk of dementia over the first 7 years of follow-up (hazard ratio (HR) [95% confidence interval (CI)] per standard deviation (SD) increase, 0.85 [0.74, 0.98]), but associations disappeared over longer follow-up intervals. The mean follow-up from baseline II was 5.9 years during which 248 participants developed dementia. A higher MIND diet score at baseline II was associated with a lower risk of dementia over every follow-up interval, but associations slightly attenuated over time (HR [95% CI] for 7 years follow-up per SD increase, 0.76 [0.66, 0.87]). The MIND diet score at baseline II was more strongly associated with the risk of dementia than the MIND diet score at baseline I. Conclusion Better adherence to the MIND diet is associated with a decreased risk of dementia within the first years of follow-up, but this may in part be explained by reverse causality and residual confounding by lifestyle. Further research is needed to unravel to which extent the MIND diet may affect the risk of dementia.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiansong Fang ◽  
Pengyue Zhang ◽  
Quan Wang ◽  
Chien-Wei Chiang ◽  
Yadi Zhou ◽  
...  

Abstract Background Genome-wide association studies (GWAS) have identified numerous susceptibility loci for Alzheimer’s disease (AD). However, utilizing GWAS and multi-omics data to identify high-confidence AD risk genes (ARGs) and druggable targets that can guide development of new therapeutics for patients suffering from AD has heretofore not been successful. Methods To address this critical problem in the field, we have developed a network-based artificial intelligence framework that is capable of integrating multi-omics data along with human protein–protein interactome networks to accurately infer accurate drug targets impacted by GWAS-identified variants to identify new therapeutics. When applied to AD, this approach integrates GWAS findings, multi-omics data from brain samples of AD patients and AD transgenic animal models, drug-target networks, and the human protein–protein interactome, along with large-scale patient database validation and in vitro mechanistic observations in human microglia cells. Results Through this approach, we identified 103 ARGs validated by various levels of pathobiological evidence in AD. Via network-based prediction and population-based validation, we then showed that three drugs (pioglitazone, febuxostat, and atenolol) are significantly associated with decreased risk of AD compared with matched control populations. Pioglitazone usage is significantly associated with decreased risk of AD (hazard ratio (HR) = 0.916, 95% confidence interval [CI] 0.861–0.974, P = 0.005) in a retrospective case-control validation. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR) agonist used to treat type 2 diabetes, and propensity score matching cohort studies confirmed its association with reduced risk of AD in comparison to glipizide (HR = 0.921, 95% CI 0.862–0.984, P = 0.0159), an insulin secretagogue that is also used to treat type 2 diabetes. In vitro experiments showed that pioglitazone downregulated glycogen synthase kinase 3 beta (GSK3β) and cyclin-dependent kinase (CDK5) in human microglia cells, supporting a possible mechanism-of-action for its beneficial effect in AD. Conclusions In summary, we present an integrated, network-based artificial intelligence methodology to rapidly translate GWAS findings and multi-omics data to genotype-informed therapeutic discovery in AD.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Luis Sanchez-Sanchez ◽  
Kelly V. Giudici ◽  
Sophie Guyonnet ◽  
Julien Delrieu ◽  
Yan Li ◽  
...  

Abstract Background Monocyte Chemoattractant Protein-1 (MCP-1), a glial-derived chemokine, mediates neuroinflammation and may regulate memory outcomes among older adults. We aimed to explore the associations of plasma MCP-1 levels (alone and in combination with β-amyloid deposition—Aβ42/40) with overall and domain-specific cognitive evolution among older adults. Methods Secondary analyses including 1097 subjects (mean age = 75.3 years ± 4.4; 63.8% women) from the Multidomain Alzheimer Preventive Trial (MAPT). MCP-1 (higher is worse) and Aβ42/40 (lower is worse) were measured in plasma collected at year 1. MCP-1 in continuous and as a dichotomy (values in the highest quartile (MCP-1+)) were used, as well as a dichotomy of Aβ42/40. Outcomes were measured annually over 4 years and included the following: cognitive composite z-score (CCS), the Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR) sum of boxes (overall cognitive function); composite executive function z-score, composite attention z-score, Free and Cued Selective Reminding Test (FCSRT - memory). Results Plasma MCP-1 as a continuous variable was associated with the worsening of episodic memory over 4 years of follow-up, specifically in measures of free and cued delayed recall. MCP-1+ was associated with worse evolution in the CCS (4-year between-group difference: β = −0.14, 95%CI = −0.26, −0.02) and the CDR sum of boxes (2-year: β = 0.19, 95%CI = 0.06, 0.32). In domain-specific analyses, MCP-1+ was associated with declines in the FCSRT delayed recall sub-domains. In the presence of low Aβ42/40, MCP-1+ was not associated with greater declines in cognitive functions. The interaction with continuous biomarker values Aβ42/40× MCP-1 × time was significant in models with CDR sum of boxes and FCSRT DTR as dependent variables. Conclusions Baseline plasma MCP-1 levels were associated with longitudinal declines in overall cognitive and episodic memory performance in older adults over a 4-year follow-up. How plasma MCP-1 interacts with Aβ42/40 to determine cognitive decline at different stages of cognitive decline/dementia should be clarified by further research. The MCP-1 association on cognitive decline was strongest in those with amyloid plaques, as measured by blood plasma Aβ42/40.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Morgane Linard ◽  
Julien Bezin ◽  
Emilie Hucteau ◽  
Pierre Joly ◽  
Isabelle Garrigue ◽  
...  

Abstract Background Considering the growing body of evidence suggesting a potential implication of herpesviruses in the development of dementia, several authors have questioned a protective effect of antiherpetic drugs (AHDs) which may represent a new means of prevention, well tolerated and easily accessible. Subsequently, several epidemiological studies have shown a reduction in the risk of dementia in subjects treated with AHDs, but the biological plausibility of this association and the impact of potential methodological biases need to be discussed in more depth. Methods Using a French medico-administrative database, we assessed the association between the intake of systemic AHDs and the incidence of (i) dementia, (ii) Alzheimer’s disease (AD), and (iii) vascular dementia in 68,291 subjects over 65 who were followed between 2009 and 2017. Regarding potential methodological biases, Cox models were adjusted for numerous potential confounding factors (including proxies of sociodemographic status, comorbidities, and use of healthcare) and sensitivity analyses were performed in an attempt to limit the risk of indication and reverse causality biases. Results 9.7% of subjects (n=6642) had at least one intake of systemic AHD, and 8883 incident cases of dementia were identified. Intake of at least one systemic AHD during follow-up was significantly associated with a decreased risk of AD (aHR 0.85 95% confidence interval [0.75–0.96], p=0.009) and, to a lesser extent with respect to p values, to both dementia from any cause and vascular dementia. The association with AD remained significant in sensitivity analyses. The number of subjects with a regular intake was low and prevented us from studying its association with dementia. Conclusions Taking at least one systemic AHD during follow-up was significantly associated with a 15% reduced risk of developing AD, even after taking into account several potential methodological biases. Nevertheless, the low frequency of subjects with a regular intake questions the biological plausibility of this association and highlights the limits of epidemiological data to evaluate a potential protective effect of a regular treatment by systemic AHDs on the incidence of dementia


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Ziyu Liu ◽  
Travis S. Johnson ◽  
Wei Shao ◽  
Min Zhang ◽  
Jie Zhang ◽  
...  

Abstract Background To help clinicians provide timely treatment and delay disease progression, it is crucial to identify dementia patients during the mild cognitive impairment (MCI) stage and stratify these MCI patients into early and late MCI stages before they progress to Alzheimer’s disease (AD). In the process of diagnosing MCI and AD in living patients, brain scans are collected using neuroimaging technologies such as computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET). These brain scans measure the volume and molecular activity within the brain resulting in a very promising avenue to diagnose patients early in a minimally invasive manner. Methods We have developed an optimal transport based transfer learning model to discriminate between early and late MCI. Combing this transfer learning model with bootstrap aggregation strategy, we overcome the overfitting problem and improve model stability and prediction accuracy. Results With the transfer learning methods that we have developed, we outperform the current state of the art MCI stage classification frameworks and show that it is crucial to leverage Alzheimer’s disease and normal control subjects to accurately predict early and late stage cognitive impairment. Conclusions Our method is the current state of the art based on benchmark comparisons. This method is a necessary technological stepping stone to widespread clinical usage of MRI-based early detection of AD.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Eun-Hye Lee ◽  
Hyuk Sung Kwon ◽  
Seong-Ho Koh ◽  
Seong Hye Choi ◽  
Jeong-Hwa Jin ◽  
...  

Abstract Background Neurofilament light chain (NFL) level has been suggested as a blood-based biomarker for neurodegeneration in dementia. However, the association between baseline NFL levels and cognitive stage transition or cortical thickness is unclear. This study aimed to investigate whether baseline NFL levels are associated with cognitive stage transition or cortical thickness in mild cognitive impairment (MCI) and cognitively unimpaired (CU) participants. Methods This study analyzed data on participants from the independent validation cohort of the Korea Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s disease (KBASE-V) study. Among the participants of KBASE-V study, 53 MCI and 146 CU participants who were followed up for ≥ 2 years and had data on the serum NFL levels were eligible for inclusion in this study. Participants were classified into three groups according to baseline serum NFL levels of low, middle, or high. Results The Kaplan–Meier analysis showed association between the serum NFL tertiles and risk of cognitive stage transition in MCI (P = 0.002) and CU (P = 0.028) participants, analyzed separately. The same is true upon analysis of MCI and CU participants together (P < 0.001). In MCI participants, the highest serum NFL tertile and amyloid-beta positivity were independent predictors for cognitive stage transition after adjusting for covariates. For CU participants, only amyloid-beta positivity was identified to be an independent predictor. Conclusion The study shows that higher serum NFL tertile levels correlate with increased risk of cognitive stage transition in both MCI and CU participants. Serum NFL levels were negatively correlated with the mean cortical thickness of the whole-brain and specific brain regions.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Byron Creese ◽  
Zahinoor Ismail

Abstract Background Late-life onset neuropsychiatric symptoms are established risk factors for dementia. The mild behavioral impairment (MBI) diagnostic framework was designed to standardize assessment to determine dementia risk better. In this Mini Review, we summarize the emerging clinical and biomarker evidence, which suggests that for some, MBI is a marker of preclinical Alzheimer’s disease. Main MBI is generally more common in those with greater cognitive impairment. In community and clinical samples, frequency is around 10–15%. Mounting evidence in cognitively normal samples links MBI symptoms with known AD biomarkers for amyloid, tau, and neurodegeneration, as well as AD risk genes. Clinical studies have found detectable differences in cognition associated with MBI in cognitively unimpaired people. Conclusion The emerging evidence from biomarker and clinical studies suggests MBI can be an early manifestation of underlying neurodegenerative disease. Future research must now further validate MBI to improve identification of those at the very earliest stages of disease.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Raúl González-Domínguez ◽  
Pol Castellano-Escuder ◽  
Sophie Lefèvre-Arbogast ◽  
Dorrain Y. Low ◽  
Andrea Du Preez ◽  
...  

Abstract Background Fatty acids play prominent roles in brain function as they participate in structural, metabolic and signaling processes. The homeostasis of fatty acids and related pathways is known to be impaired in cognitive decline and dementia, but the relationship between these metabolic disturbances and common risk factors, namely the ɛ4 allele of the apolipoprotein E (ApoE-ɛ4) gene and sex, remains elusive. Methods In order to investigate early alterations associated with cognitive decline in the fatty acid-related serum metabolome, we here applied targeted metabolomics analysis on a nested case-control study (N=368), part of a prospective population cohort on dementia. Results When considering the entire study population, circulating levels of free fatty acids, acyl-carnitines and pantothenic acid were found to be increased among those participants who had greater odds of cognitive decline over a 12-year follow-up. Interestingly, stratified analyses indicated that these metabolomic alterations were specific for ApoE-ɛ4 non-carriers and women. Conclusions Altogether, our results highlight that the regulation of fatty acids and related metabolic pathways during ageing and cognitive decline depends on complex inter-relationships between the ApoE-ε4 genotype and sex. A better understanding of the ApoE-ɛ4 and sex dependent modulation of metabolism is essential to elucidate the individual variability in the onset of cognitive decline, which would help develop personalized therapeutic approaches.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ling-Zhi Ma ◽  
Hao Hu ◽  
Zuo-Teng Wang ◽  
Ya-Nan Ou ◽  
Qiang Dong ◽  
...  

Abstract Background There are many pathological changes in the brains of Alzheimer’s disease (AD) patients. For many years, the mainstream view on the pathogenesis of AD believes that β-amyloid (Aβ) usually acts independently in addition to triggering functions. However, the evidence now accumulating indicates another case that these pathological types have synergies. The objective of this study was to investigate whether effects of Aβ pathology on cognition were mediated by AD pathologies, including tau-related pathology (p-tau), neurodegeneration (t-tau, MRI measurements), axonal injury (NFL), synaptic dysfunction (neurogranin), and neuroinflammation (sTREM2, YKL-40). Methods Three hundred seventy normal controls (CN) and 623 MCI patients from the ADNI (Alzheimer’s Disease Neuroimaging Initiative) database were recruited in this research. Linear mixed-effects models were used to evaluate the associations of baseline Aβ with cognitive decline and biomarkers of several pathophysiological pathways. Causal mediation analyses with 10,000 bootstrapped iterations were conducted to explore the mediation effects of AD pathologies on cognition. Results Tau-related pathology, neurodegeneration, neuroinflammation are correlated with the concentration of Aβ, even in CN participants. The results show that age, gender, and APOE ε4 carrier status have a moderating influence on some of these relationships. There is a stronger association of Aβ with biomarkers and cognitive changes in the elderly and females. In CN group, Aβ pathology is directly related to poor cognition and has no mediating effect (p < 0.05). In mild cognitive impairment, tau-related pathology (26.15% of total effect) and neurodegeneration (14.8% to 47.0% of total effect) mediate the impact of Aβ on cognition. Conclusions In conclusion, early Aβ accumulation has an independent effect on cognitive decline in CN and a tau, neurodegeneration-dependent effect in the subsequent cognitive decline in MCI patients.


Sign in / Sign up

Export Citation Format

Share Document