Simply supported FPEDs connected by springs for broadband energy harvesting

2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.

Author(s):  
Jianyong Zuo ◽  
Jie Yu ◽  
Cheng Liu ◽  
Yihao Gu ◽  
Lei Zuo ◽  
...  

Abstract Railroad vibration energy harvester has been researched and developed to harness the energy from the vibration of railway track when the trains pass. The vibrational energy could be transformed into electrical energy using mechanical motion rectification (MMR) mechanism and then further be used to power trackside equipment including sensors and some smart electrical devices. In order to test the performance of the MMR railroad energy harvesting system, a series of infield tests were conducted with a self-developed distributed measurement system in Railroad Test Lab at Tongji University. A 10V peak voltage was achieved with 8 Ohms external resistive load at the train speed of 30 km/h, which was consistent with the result of in-lab bench tests. In addition, some experience of design and installation for the motioned based energy harvesting system was gained, which can provide some references for the future improvement of railroad energy harvesting systems.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A piezoelectric vibration energy harvester is designed to generate electricity under the weight of passing crowds. The piezoelectric beam buckles to a controlled extent when the device is stepped on. The device is a seven bar mechanism. The upper and lower bars as well as the lateral links are rigid. The middle horizontal beam is a bimorph piezoelectric beam. Damages to the piezoelectric beam are avoided by constraining its axial deformation. This constrain is implemented by limiting squeezing of the mechanism. When a person moves over the mechanism or steps off the devices it causes the bimorph to buckle or return to the unbuckled condition. The transitions result in vibrations of the piezoelectric beam and thus generate energy. In this paper, the energy harvester is analytically modeled. The electro-mechanical coupling and the geometric nonlinearities have been included in the model for the piezoelectric beam. The design criteria for the device are discussed. It is demonstrated that the device can be realized with commonly used piezoelectric patches and can generate hundreds of milliwatts of power. A three part beam is also investigated. The effect of design parameters on the generated power and required tolerances are illustrated. The proposed device could be implemented in the sidewalks producing energy from the weight of people passing over it. Other possible applications are portable smart phones chargers and shoe hill energy harvesting. Dance floor of a club is another applicable example for using this harvester. The main advantage of using horizontal configuration instead of a vertical arrangement is the ease of placement in the pavements.


Author(s):  
Hong-Xiang Zou ◽  
Ke-Xiang Wei ◽  
Lin-Chuan Zhao ◽  
Wen-Ming Zhang ◽  
Lei Zuo ◽  
...  

Abstract Piezoelectric flow energy harvesting can be a potential way to yield endless electrical energy for small mechanical systems and wireless sensors. We propose a novel magnetically coupled bistable vibration energy harvester using wings for the applications in the water environment. The water flow energy can be harvested through the induced vibration of wings. The flextensional transducer can be packaged conveniently by using non-contact magnetic coupling mechanism. The magnetic force is amplified by the flextensional structure and transferred to the piezoelectric layer, thereby achieving higher power density and better reliability. A prototype was fabricated and tested in a water flume, which attended a maximum power of about 400 μW and the average power of 55 μW at the water flow velocity of 4 m/s. No significant variation occurred to the performance of the harvester after five days of continuous operation in the water, which indicates that the magnetically coupled vibration energy harvesting method has high reliability in the underwater environment.


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


10.5772/53948 ◽  
2012 ◽  
Vol 9 (5) ◽  
pp. 225 ◽  
Author(s):  
Zdenek Hadas ◽  
Vojtech Vetiska ◽  
Vladislav Singule ◽  
Ondrej Andrs ◽  
Jiri Kovar ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 907
Author(s):  
Xiaodong Yan ◽  
Mupeng Zheng ◽  
Mankang Zhu ◽  
Yudong Hou

The question as to which piezoelectric composition is favorable for energy harvesting has been addressed in the past few years. However, discussion on this topic continues. In this work, an answer is provided through a feasible method which can be used in selecting piezoelectric material. The energy harvesting behavior of hard (P4 and P8) and soft (P5 and P5H) lead zirconate titanate (PZT) ceramics was investigated. The results show that the maximum piezoelectric voltage coefficient g33 and transduction coefficient d33 × g33 were obtained in P5 ceramic. Meanwhile, the power generation characteristics at low frequencies were compared by the vibration energy harvester with a cantilever beam structure. The results indicate that the energy harvester fabricated by the P5 ceramic with the maximum d33 × g33 values also demonstrated the best power generation characteristics. The results unambiguously demonstrate that the power density and energy conversion efficiency of the energy harvesting devices are dominated by the d33 × g33 value of the piezoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document