The product quality risk assessment of e-commerce by machine learning algorithm on spark in big data environment

2019 ◽  
Vol 37 (4) ◽  
pp. 4705-4715
Author(s):  
Yi Liu ◽  
Jiahuan Lu ◽  
Feng Mao ◽  
Kaidi Tong
2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Suad Mohammed Othman ◽  
Fadl Mutaher Ba-Alwi ◽  
Nabeel T. Alsohybe ◽  
Amal Y. Al-Hashida

A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


2020 ◽  
pp. practneurol-2020-002688
Author(s):  
Stephen D Auger ◽  
Benjamin M Jacobs ◽  
Ruth Dobson ◽  
Charles R Marshall ◽  
Alastair J Noyce

Modern clinical practice requires the integration and interpretation of ever-expanding volumes of clinical data. There is, therefore, an imperative to develop efficient ways to process and understand these large amounts of data. Neurologists work to understand the function of biological neural networks, but artificial neural networks and other forms of machine learning algorithm are likely to be increasingly encountered in clinical practice. As their use increases, clinicians will need to understand the basic principles and common types of algorithm. We aim to provide a coherent introduction to this jargon-heavy subject and equip neurologists with the tools to understand, critically appraise and apply insights from this burgeoning field.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sayeh Bagherzadeh ◽  
Sajjad Shokouhyar ◽  
Hamed Jahani ◽  
Marianna Sigala

Purpose Research analyzing online travelers’ reviews has boomed over the past years, but it lacks efficient methodologies that can provide useful end-user value within time and budget. This study aims to contribute to the field by developing and testing a new methodology for sentiment analysis that surpasses the standard dictionary-based method by creating two hotel-specific word lexicons. Design/methodology/approach Big data of hotel customer reviews posted on the TripAdvisor platform were collected and appropriately prepared for conducting a binary sentiment analysis by developing a novel bag-of-words weighted approach. The latter provides a transparent and replicable procedure to prepare, create and assess lexicons for sentiment analysis. This approach resulted in two lexicons (a weighted lexicon, L1 and a manually selected lexicon, L2), which were tested and validated by applying classification accuracy metrics to the TripAdvisor big data. Two popular methodologies (a public dictionary-based method and a complex machine-learning algorithm) were used for comparing the accuracy metrics of the study’s approach for creating the two lexicons. Findings The results of the accuracy metrics confirmed that the study’s methodology significantly outperforms the dictionary-based method in comparison to the machine-learning algorithm method. The findings also provide evidence that the study’s methodology is generalizable for predicting users’ sentiment. Practical implications The study developed and validated a methodology for generating reliable lexicons that can be used for big data analysis aiming to understand and predict customers’ sentiment. The L2 hotel dictionary generated by the study provides a reliable method and a useful tool for analyzing guests’ feedback and enabling managers to understand, anticipate and re-actively respond to customers’ attitudes and changes. The study also proposed a simplified methodology for understanding the sentiment of each user, which, in turn, can be used for conducting comparisons aiming to detect and understand guests’ sentiment changes across time, as well as across users based on their profiles and experiences. Originality/value This study contributes to the field by proposing and testing a new methodology for conducting sentiment analysis that addresses previous methodological limitations, as well as the contextual specificities of the tourism industry. Based on the paper’s literature review, this is the first research study using a bag-of-words approach for conducting a sentiment analysis and creating a field-specific lexicon.


Sign in / Sign up

Export Citation Format

Share Document