Direct 3D model extraction method for color volume images
BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.