Report of oscillopsia in ataxia patients correlates with activity, not vestibular ocular reflex gain

2021 ◽  
pp. 1-9
Author(s):  
Jennifer L. Millar ◽  
Michael C. Schubert

BACKGROUND: Patients with cerebellar ataxia report oscillopsia, “bouncy vision” during activity, yet little is known how this impacts daily function. The purpose of this study was to quantify the magnitude of oscillopsia and investigate its relation to vestibulo-ocular reflex (VOR) function and daily activity in cerebellar ataxia. METHODS: 19 patients diagnosed with cerebellar ataxia and reports of oscillopsia with activity were examined using the video head impulse test (vHIT), Oscillopsia Functional Index (OFI), and clinical gait measures. Video head impulse data was compared against 40 healthy controls. RESULTS: OFI scores in ataxia patients were severe and inversely correlated with gait velocity (r = –0.55, p <  0.05), but did not correlate with VOR gains. The mean VOR gain in the ataxic patients was significantly reduced and more varied compared with healthy controls. All patients had abnormal VOR gains and eye/head movement patterns in at least one semicircular canal during VHIT with passive head rotation. CONCLUSIONS: Patients with cerebellar ataxia and oscillopsia have impaired VOR gains, yet severity of oscillopsia and VOR gains are not correlated. Patients with cerebellar ataxia have abnormal oculomotor behavior during passive head rotation that is correlated with gait velocity, but not magnitude of oscillopsia.

2018 ◽  
Vol 23 (5) ◽  
pp. 285-289 ◽  
Author(s):  
Patricia Castro ◽  
Sara Sena Esteves ◽  
Florencia Lerchundi ◽  
David Buckwell ◽  
Michael A. Gresty ◽  
...  

Gaze stabilization during head movements is provided by the vestibulo-ocular reflex (VOR). Clinical assessment of this reflex is performed using the video Head Impulse Test (vHIT). To date, the influence of different fixation distances on VOR gain using the vHIT has not been explored. We assessed the effect of target proximity on the horizontal VOR using the vHIT. Firstly, we assessed the VOR gain in 18 healthy subjects with 5 viewing target distances (150, 40, 30, 20, and 10 cm). The gain increased significantly as the viewing target distance decreased. A second experiment on 10 subjects was performed in darkness whilst the subjects were imagining targets at different distances. There were significant inverse relationships between gain and distance for both the real and the imaginary targets. There was a statistically significant difference between light and dark gains for the 20- and 40-cm distances, but not for the 150-cm distance. Theoretical VOR gains for different target distances were calculated and compared with those found in light and darkness. The increase in gain observed for near targets was lower than predicted by geometrical calculations, implying a physiological ceiling effect on the VOR. The VOR gain in the dark, as assessed with the vHIT, demonstrates an enhancement associated with a reduced target distance.


Author(s):  
Homa Zarrinkoob ◽  
Hadi Behzad ◽  
Seyed Mehdi Tabatabaee

Background and Aim: One of the tools for ass­essing the vestibulo-ocular reflex (VOR) is using video head impulse test (vHIT). In this test by placing the head at different angles and shaking the head, three semicircular canals of the vestibular system in each ear can be exami­ned separately. The purpose of this study was to investigate the relationship between the low and high velocities of the vHIT test with VOR and its compensatory saccades. Methods: The vHIT test was performed by an examiner in 49 normal individuals aged 23–39 at low and high velocities. All participants had normal hearing, visual, and vestibular systems. Results: Mean gains in the horizontal, anterior and posterior semicircular canals in the right ear respectively were 0.92, 1 and 0.90 and in the left ear 0.93, 0.99 and 0.95 for low velocity and 0.78, 0.92 and 0.79 in the right ear and 0.80, 0.85 and 0.86 in the left ear for high velocity. Also, the number of compensatory saccade at high velocity was higher than those at the low velocity and the latency of compensatory sacc­ade was lower at the higher velocity. Conclusion: In the vHIT test, VOR gain decreases at high velocity that is statistically significant. Also, compensatory saccades are more likely to occur at high velocity with sma­ller delay. Therefore, high-velocity vHIT test is not recommended for the purpose of examining the VOR gain and compensatory saccade.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dmitrii Starkov ◽  
Bernd Vermorken ◽  
T. S. Van Dooren ◽  
Lisa Van Stiphout ◽  
Miranda Janssen ◽  
...  

Objective: This study aimed to identify differences in vestibulo-ocular reflex gain (VOR gain) and saccadic response in the suppression head impulse paradigm (SHIMP) between predictable and less predictable head movements, in a group of healthy subjects. It was hypothesized that higher prediction could lead to a lower VOR gain, a shorter saccadic latency, and higher grouping of saccades.Methods: Sixty-two healthy subjects were tested using the video head impulse test and SHIMPs in four conditions: active and passive head movements for both inward and outward directions. VOR gain, latency of the first saccade, and the level of saccade grouping (PR-score) were compared among conditions. Inward and active head movements were considered to be more predictable than outward and passive head movements.Results: After validation, results of 57 tested subjects were analyzed. Mean VOR gain was significantly lower for inward passive compared with outward passive head impulses (p &lt; 0.001), and it was higher for active compared with passive head impulses (both inward and outward) (p ≤ 0.024). Mean latency of the first saccade was significantly shorter for inward active compared with inward passive (p ≤ 0.001) and for inward passive compared with outward passive head impulses (p = 0.012). Mean PR-score was only significantly higher in active outward than in active inward head impulses (p = 0.004).Conclusion: For SHIMP, a higher predictability in head movements lowered gain only in passive impulses and shortened latencies of compensatory saccades overall. For active impulses, gain calculation was affected by short-latency compensatory saccades, hindering reliable comparison with gains of passive impulses. Predictability did not substantially influence grouping of compensatory saccades.


Revista CEFAC ◽  
2020 ◽  
Vol 22 (6) ◽  
Author(s):  
Patricia Oyarzún Díaz ◽  
Sebastián Rivera Retamal ◽  
Sergio Jiménez Cofré ◽  
Hugo Segura Pujol

ABSTRACT Purpose: to identify and analyze the available evidence on the reference values of the vestibulo-ocular reflex gain obtained with the video head impulse test. Methods: an integrative review based on the PRISMA protocol, searching the ProQuest, EBSCO, PubMed, ScienceDirect, Cochrane Library, LILACS, and SciELO databases with keywords. The studies included were original research articles, systematic reviews, and meta-analyses published since 2009, involving humans, written in English, Spanish and/or Portuguese. Results: 10,250 studies related to the keywords were found. Of these, 10 articles met the inclusion criteria and were analyzed following the CADE protocol. On the horizontal plane, the values ranged from 0.80 to 1.06, while on the right anterior/left posterior and on the left anterior/right posterior planes, the values ranged from 0.80 to 1.03. Other relevant data for obtaining the gain were analyzed, such as the number of impulses, the assessor’s experience, the patient-object distance, and the percentage of asymmetry. Conclusion: little research on the theme, recently developed and published, mostly in European countries, was found. This shows the need for a greater number of studies to strengthen the scientific evidence.


2018 ◽  
Vol 128 (10) ◽  
pp. 2383-2389 ◽  
Author(s):  
Jorge Rey-Martinez ◽  
Izaskun Thomas-Arrizabalaga ◽  
Juan Manuel Espinosa-Sanchez ◽  
Angel Batuecas-Caletrio ◽  
Gabriel Trinidad-Ruiz ◽  
...  

2019 ◽  
Vol 72 (1-2) ◽  
pp. 51-53
Author(s):  
Dusan Pavlovic

Introduction. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome is a rare neurodegenerative disease with instability as the main presenting symptom. Patients with this syndrome often present with central and peripheral vestibular signs. This slowly progressive disease usually starts after 60 years of age and it takes 11 years to diagnose it. Case Report. Here I present a 62-year-old woman with instability lasting for 7 years, but deteriorating in the last two years with two episodes of falls, diplopia when looking to the right, paresthesia in the extremities and clumsiness with hands. Clinical examination revealed dysarthria, positive Romberg test, left hand dysmetria, gaze evoked and downbeat nystagmus, positive head impulse test, absent vestibulo-ocular reflex at video head impulse test, no response to caloric stimulation, no smooth pursuit and dysmetric and prolonged saccades at videonystagmography, positive visually enhanced vestibulo ocular reflex test, normal head magnetic resonance imaging, subclinical signs of polyneuropathy at electroneurography and negative autoimmune and paraneoplastic cerebellar antibodies. Conclusion. Instability is the first symptom in patients with cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Easy to perform, positive visually enhanced vestibulo-ocular reflex test points to a concomitant central and peripheral vestibular disorder. Negative autoimmune and paraneoplastic antibodies rule out other cerebellar diseases. However, normal head magnetic resonance imaging findings without expressed signs of peripheral sensory neuropathy are in concordance with a slowly progressive form of this syndrome.


2021 ◽  
pp. 1-9
Author(s):  
Kim E. Hawkins ◽  
Elodie Chiarovano ◽  
Serene S. Paul ◽  
Ann M Burgess ◽  
Hamish G. MacDougall ◽  
...  

BACKGROUND: Parkinson’s disease (PD) is a common multi-system neurodegenerative disorder with possible vestibular system dysfunction, but prior vestibular function test findings are equivocal. OBJECTIVE: To report and compare vestibulo-ocular reflex (VOR) gain as measured by the video head impulse test (vHIT) in participants with PD, including tremor dominant and postural instability/gait dysfunction phenotypes, with healthy controls (HC). METHODS: Forty participants with PD and 40 age- and gender-matched HC had their vestibular function assessed. Lateral and vertical semicircular canal VOR gains were measured with vHIT. VOR canal gains between PD participants and HC were compared with independent samples t-tests. Two distinct PD phenotypes were compared to HC using Tukey’s ANOVA. The relationship of VOR gain with PD duration, phenotype, severity and age were investigated using logistic regression. RESULTS: There were no significant differences between groups in vHIT VOR gain for lateral or vertical canals. There was no evidence of an effect of PD severity, phenotype or age on VOR gains in the PD group. CONCLUSION: The impulsive angular VOR pathways are not significantly affected by the pathophysiological changes associated with mild to moderate PD.


2012 ◽  
Vol 70 (12) ◽  
pp. 942-944 ◽  
Author(s):  
Eliana T. Maranhão ◽  
Péricles Maranhão-Filho

The authors highlights the importance of the vestibulo-ocular reflex examination through the head impulse test as a diagnostic method for vestibular dysfunction as well as, and primarily, a bedside semiotic resource capable of differentiating between acute peripheral vestibulopathy and a cerebellar or brainstem infarction in emergency rooms.


2020 ◽  
Vol 137 ◽  
pp. 110161
Author(s):  
Rosana Rodríguez-Villalba ◽  
Miguel Caballero-Borrego ◽  
Vanessa Villarraga ◽  
Victoria Rivero de Jesús ◽  
Maria Antonia Claveria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document