Automated detection of diabetic retinopathy using custom convolutional neural network
Diabetic retinopathy is an eye deficiency that affects retina as a result of the patient having diabetes mellitus caused by high sugar levels, which may eventually lead to macular edema. The objective of this study is to design and compare several deep learning models that detect severity of diabetic retinopathy, determine risk of leading to macular edema, and segment different types of disease patterns using retina images. Indian Diabetic Retinopathy Image Dataset (IDRiD) dataset was used for disease grading and segmentation. Since images of the dataset have different brightness and contrast, we employed three techniques for generating processed images from the original images, which include brightness, color and, contrast (BCC) enhancing, color jitters (CJ), and contrast limited adaptive histogram equalization (CLAHE). After image preporcessing, we used pre-trained ResNet50, VGG16, and VGG19 models on these different preprocessed images both for determining the severity of the retinopathy and also the chances of macular edema. UNet was also applied to segment different types of diseases. To train and test these models, image dataset was divided into training, testing, and validation data at 70%, 20%, and 10% ratios, respectively. During model training, data augmentation method was also applied to increase the number of training images. Study results show that for detecting the severity of retinopathy and macular edema, ResNet50 showed the best accuracy using BCC and original images with an accuracy of 60.2% and 82.5%, respectively, on validation dataset. In segmenting different types of diseases, UNet yielded the highest testing accuracy of 65.22% and 91.09% for microaneurysms and hard exudates using BCC images, 84.83% for optic disc using CJ images, 59.35% and 89.69% for hemorrhages and soft exudates using CLAHE images, respectively. Thus, image preprocessing can play an important role to improve efficacy and performance of deep learning models.