scholarly journals Roles of GOLPH3, a PI(4)P binding protein, in the physiopathology of cancer

Author(s):  
Maria Grazia Giansanti ◽  
Roberto Piergentili ◽  
Angela Karimpour Ghahnavieh ◽  
Anna Frappaolo ◽  
Stefano Sechi

Golgi phosphoprotein 3 (GOLPH3), a Phosphatidylinositol 4-Phosphate [PI(4)P] effector at the Golgi, is required for several intracellular functions, including Golgi ribbon structure maintenance, Golgi glycosylation and vesicle trafficking. It is amplified in several solid tumor types and its overexpression correlates with poor prognosis. GOLPH3 influences tumorigenesis through (i) regulation of Golgi-to-plasma membrane trafficking; (ii) turnover and glycosylation of cancer-relevant glycoproteins; (iii) influence on DNA damage response and maintenance of genomic stability.

2021 ◽  
Author(s):  
Eudald Felip ◽  
Lucia Gutierrez-Chamorro ◽  
Maica Gómez ◽  
Edurne Garcia-Vidal ◽  
Margarita Romeo ◽  
...  

2018 ◽  
Vol 10 ◽  
pp. 175883591878665 ◽  
Author(s):  
Anna Minchom ◽  
Caterina Aversa ◽  
Juanita Lopez

Maintenance of genomic stability is a critical determinant of cell survival and relies on the coordinated action of the DNA damage response (DDR), which orchestrates a network of cellular processes, including DNA replication, DNA repair and cell-cycle progression. In cancer, the critical balance between the loss of genomic stability in malignant cells and the DDR provides exciting therapeutic opportunities. Drugs targeting DDR pathways taking advantage of clinical synthetic lethality have already shown therapeutic benefit – for example, the PARP inhibitor olaparib has shown benefit in BRCA-mutant ovarian and breast cancer. Olaparib has also shown benefit in metastatic prostate cancer in DDR-defective patients, expanding the potential biomarker of response beyond BRCA. Other agents and combinations aiming to block the DDR while pushing damaged DNA through the cell cycle, including PARP, ATR, ATM, CHK and DNA-PK inhibitors, are in development. Emerging work is also uncovering how the DDR interacts intimately with the host immune response, including by activating the innate immune response, further suggesting that clinical applications together with immunotherapy may be beneficial. Here, we review recent considerations related to the DDR from a clinical standpoint, providing a framework to address future directions and clinical opportunities.


2013 ◽  
Vol 288 (29) ◽  
pp. 21376-21388 ◽  
Author(s):  
Leah C. Young ◽  
Darin W. McDonald ◽  
Michael J. Hendzel

DNA damage evokes a complex and highly coordinated DNA damage response (DDR) that is integral to the suppression of genomic instability. Double-strand breaks (DSBs) are considered the most deleterious form damage. Evidence suggests that trimethylation of histone H3 lysine 9 (H3K9me3) presents a barrier to DSB repair. Also, global levels of histone methylation are clinically predictive for several tumor types. Therefore, demethylation of H3K9 may be an important step in the repair of DSBs. The KDM4 subfamily of demethylases removes H3K9 tri- and dimethylation and contributes to the regulation of cellular differentiation and proliferation; mutation or aberrant expression of KDM4 proteins has been identified in several human tumors. We hypothesize that members of the KDM4 subfamily may be components of the DDR. We found that Kdm4b-enhanced GFP (EGFP) and KDM4D-EGFP were recruited rapidly to DNA damage induced by laser micro-irradiation. Focusing on the clinically relevant Kdm4b, we found that recruitment was dependent on poly(ADP-ribose) polymerase 1 activity as well as Kdm4b demethylase activity. The Kdm4 proteins did not measurably accumulate at γ-irradiation-induced γH2AX foci. Nevertheless, increased levels of Kdm4b were associated with decreased numbers of γH2AX foci 6 h after irradiation as well as increased cell survival. Finally, we found that levels of H3K9me2 and H3K9me3 were decreased at early time points after 2 gray of γ-irradiation. Taken together, these data demonstrate that Kdm4b is a DDR protein and that overexpression of Kdm4b may contribute to the failure of anti-cancer therapy that relies on the induction of DNA damage.


2017 ◽  
Vol 37 (9) ◽  
Author(s):  
Zhiguo Li ◽  
Chen Shao ◽  
Yifan Kong ◽  
Colin Carlock ◽  
Nihal Ahmad ◽  
...  

ABSTRACT MDC1 is a central player in checkpoint activation and subsequent DNA repair following DNA damage. Although MDC1 has been studied extensively, many of its known functions, to date, pertain to the DNA damage response (DDR) pathway. Herein we report a novel function of phosphorylated MDC1 that is independent of ATM and DNA damage and is required for proper mitotic progression and maintenance of genomic stability. We demonstrate that MDC1 is an in vivo target of Plk1 and that phosphorylated MDC1 is dynamically localized to nuclear envelopes, centrosomes, kinetochores, and midbodies. Knockdown of MDC1 or abrogation of Plk1 phosphorylation of MDC1 causes a delay of the prometaphase-metaphase transition. It is significant that mice with reduced levels of MDC1 showed an elevated level of spontaneous tumors in aged animals. Our results demonstrate that MDC1 also plays a fundamentally significant role in maintenance of genomic stability through a DDR-independent pathway.


Author(s):  
Chunyan Zong ◽  
Tianyu Zhu ◽  
Jie He ◽  
Rui Huang ◽  
Renbing Jia ◽  
...  

2011 ◽  
Vol 25 (20) ◽  
pp. 2158-2172 ◽  
Author(s):  
D. Blazek ◽  
J. Kohoutek ◽  
K. Bartholomeeusen ◽  
E. Johansen ◽  
P. Hulinkova ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3015-3015
Author(s):  
Enrico Derenzini ◽  
Claudio Agostinelli ◽  
Ilaria Iacobucci ◽  
Enrica Imbrogno ◽  
Beatrice Casadei ◽  
...  

Abstract Introduction Genomic instability and constitutive activation of the DNA damage response (DDR) pathway has been recently described in models of aggressive myc-driven lymphoid malignancies. The MYC oncogene has been reported to induce genomic instability by a mechanism involving replication stress. On the other hand, MYC is overexpressed in a fraction of diffuse large B-cell lymphomas (DLBCLs), and its overexpression has been reported to be associated with poor prognosis. The checkpoint kinases 1 (CHK1) and 2 (CHK2), are serine-threonine kinase involved in the DDR pathway. DDR activation triggers the phosphorylation of the histone H2AX at ser 139, a known marker of DNA damage and genomic instability. The correlation between genomic instability, MYC expression, and prognosis has not been investigated yet in DLBCL. Methods Immunohistochemistry (IHC) for phospho (γ) H2AX, pCHK1, pCHK2 was performed in tissue microarrays (TMAs) from 97 consecutive patients treated at our Institution between 2004 and 2011 with R-CHOP/CHOP-like regimens, with available paraffin embedded tissue from initial diagnosis. Moreover, to evaluate the therapeutic potential of DDR pathway inhibition in DLBCL, the DLBCL cell lines HBL-1, U2932, TMD8, SUDHL-6, BJAB, SUDHL-4 and primary DLBCL cells were incubated with the CHK inhibitor PF-0477736 (Pfizer). Results In the TMA study 57% of patients (n=55) displayed high levels of basal γH2AX (>30% of positive cells), 55% (n=53) displayed pCHK1/pCHK2 activation and of note all DLBCL cell lines showed detectable baseline activation of CHK1/CHK2 and/or H2AX phosphorylation, by western immunoblotting. γH2AX positive cases distributed equally in germinal center (GC) and in non GC DLBCLs, and were significantly associated with MYC expression (p<0.01). Five-year survival rate was 70% vs 41% for γH2AX-low and γH2AX-high patients respectively (p=0.01). Factors significantly related to the outcome in multivariate analysis were International Prognostic Index (IPI) score and γH2AX expression. Remarkably the prognostic significance of γH2AX was particularly evident in the low risk IPI group (0-2 risk factors), identifying a subgroup characterized by worse outcome (54% 5-year OS). In the in vitro study a significant growth inhibition (WST-1 assay), was evident after 48 hrs in all cell lines (IC50 10-230 nM). PF-0477736 25-500 nM induced cell death by apoptosis (annexin V- propidium iodide staining) in a time and dose dependent manner. Notably PF-0477736 demonstrated activity also in primary DLBCL cells (IC 50 of 50-500 nM, 24 hrs). We observed inhibition of phosphorylation of the downstream target CDC25c (ser 216), coupled with a marked increase in γH2AX ser 139 and CHK1 phosphorylation (ser317 and 345) following treatment. Conclusions A significant fraction of DLBCLs shows high levels of inherent genomic instability; the DDR activation marker γH2AX is a poor prognostic predictor in DLBCL and interestingly is significantly associated with MYC expression. DDR inhibition resulted to be highly effective in DLBCL cell lines and primary DLBCL cells; on treatment modifications of CHK1 and H2AX phosphorylation could be useful biomarkers of CHK inhibitors activity. These data provide strong rationale for targeting the DDR pathway and for clinical investigation of CHK inhibitors in DLBCL. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Chao Jiang ◽  
Xueyan Liu ◽  
Meng Wang ◽  
Guoyue Lv ◽  
Guangyi Wang

miR-802 has been reported to be dysregulated in multiple tumors and contribute to tumor progression. However, its role in HCC was still largely unknown. The aim of this study is to investigate the function and mechanism of miR-802 in HCC progression. The results showed that miR-802 was upregulated in the peripheral blood and tumor tissue of HCC patients, and high levels of blood miR-802 predicted poor prognosis. miR-802 had no effect on the proliferation and migration of HCC cell lines. Interestingly, the levels of CD8/CD28 and regulated in development and DNA damage response 1 (REDD1) were declined along with the upregulation of miR-802 in vivo. Hence, it is speculated that miR-802 participated in the regulation of T-cell function in HCC patients. Furthermore, we demonstrated that mir-802 directly targets REDD1 and inhibited its expression. miR-802 increased the expression of programmed cell death protein 1 (PD-1) and decreased the expression of interferon-γ (IFN-γ) and CD8+CD28+ T-cell number. In conclusion, miR-802 was involved in T-cell exhaustion through posttranscriptionally suppressing REDD1, which might offer the suppressive effect of miR-802 on HCC progression.


Sign in / Sign up

Export Citation Format

Share Document