scholarly journals Methotrexate—Mechanisms of Drug Action

Author(s):  
Przemysław Koźmiński ◽  
Paweł Halik ◽  
Ewa Gniazdowska

Methotrexate (MTX), a structural analogue of folic acid, that inhibits cell division (mainly in the S phase of the cell cycle) is commonly used for the treatment of many cancers as well for severe and resistant forms of autoimmune pathologies and inflammatory disorders. This paragraph of clinical overview presents state of knowledge with regards to different pathways of MTX active transport system, mechanisms of action and its applications as immunosuppressive drug and anticancer agent.  

2020 ◽  
Vol 21 (10) ◽  
pp. 3483 ◽  
Author(s):  
Przemysław Koźmiński ◽  
Paweł Krzysztof Halik ◽  
Raphael Chesori ◽  
Ewa Gniazdowska

Methotrexate, a structural analogue of folic acid, is one of the most effective and extensively used drugs for treating many kinds of cancer or severe and resistant forms of autoimmune diseases. In this paper, we take an overview of the present state of knowledge with regards to complex mechanisms of methotrexate action and its applications as immunosuppressive drug or chemotherapeutic agent in oncological combination therapy. In addition, the issue of the potential benefits of methotrexate in the development of neurological disorders in Alzheimer’s disease or myasthenia gravis will be discussed.


2008 ◽  
Vol 30 (4) ◽  
pp. 349-365 ◽  
Author(s):  
Antoni Hurtado ◽  
Tomàs Pinós ◽  
Anna Barbosa-Desongles ◽  
Sandra López-Avilés ◽  
Jordi Barquinero ◽  
...  

Background: It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERβ) remain elusive.Methods: We have analyzed the levels of ERβ1 and ERβ2 throughout the cell cycle, as well as the mechanisms of action and the consequences of the over-expression of ERβ1 in the human prostate cancer LNCaP cell line.Results: Both ERβ1 mRNA and protein expression increased from the G1 to the S phase and decreased before entering the G2/M phase, whereas ERβ2 levels decreased during the S phase and increased in the G2/M phase. ERβ1 protein was detected in both the nuclear and non-nuclear fractions, and ERβ2 was found exclusively in the nucleus. Regarding the mechanisms of action, endogenous ERβ was able to activate transcription via ERE during the S phase in a ligand-dependent manner, whereas no changes in AP1 and NFκB transactivation were observed after exposure to estradiol or the specific inhibitor ICI 182,780. Over-expression of either wild type ERβ1 or ERβ1 mutated in the DNA-binding domain caused an arrest in early G1. This arrest was accompanied by the interaction of over-expressed ERβ1 with c-Jun N-terminal protein kinase 1 (JNK1) and a decrease in c-Jun phosphorylation and cyclin D1 expression. The administration of ICI impeded the JNK1–ERβ1 interaction, increased c-Jun phosphorylation and cyclin D1 expression and allowed the cells to progress to late G1, where they became arrested.Conclusions: Our results demonstrate that, in LNCaP prostate cancer cells, both ERβ isoforms are differentially expressed during the cell cycle and that ERβ regulates the G1 phase by a non-genomic mechanism.


2019 ◽  
Author(s):  
Zhen-Hui Xin ◽  
Ya-Li Meng ◽  
Wen-Jing Jiang ◽  
Ya-Peng Li ◽  
Li-Ping Ge ◽  
...  

Abstract With the improvement and advance in cancer diagnosis and treatment, the cancer is still a major cause of morbidity and mortality throughout the world. Obviously, new breakthroughs in therapies remain be urgent needed. In this work, we designed and synthesized the compound 1-4, namely resveratrol analogues with methylation of hydroxy distyrene, to further explore its new anti-cancer potential. Encouragingly, compound 1 (( E )-4,4'-(ethene-1,2-diyl)bis(3,5-dimethylphenol)) exhibited cytotoxicity superior to resveratrol in MCF 7 cells. More importantly, the compound 1 showed greater toxicity to tumor cells than that to normal cells, which proved that it could selectively kill tumor cells. The favorable results encouraged us to explore the inhibitory mechanism of compound 1 on MCF 7 cells. The research finding indicated the compound 1 inhibited tumor cell proliferation by both arresting cell cycle in S phase and apoptosis via a prooxidant manner. In addition, the results further verified compound 1 caused cell cycle arrest in S phase and apoptosis by down-regulation of the cycling A1/cycling A2 expression and the rise of Bax/Bcl-2 ratio in a p21-dependant pathway in MCF 7 cells. Therefore, these results are helpful for the effective design of anticancer reagents and the better understanding of their mechanism of action.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1684-1684
Author(s):  
Linhua Jin ◽  
Shinya Kimura ◽  
Yixin Zhou ◽  
Junya Kuroda ◽  
Hiroya Asou ◽  
...  

Abstract Abstract 1684 Poster Board I-710 Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma resistant to standard chemotherapy. Since p53 inactivating mutations occur primarily in the aggressive and refractory MCL variants, development of novel compounds that target p53-independent signaling pathways is of considerable interest. We investigated the cytotoxic efficacy and molecular mechanisms of a newly discovered anticancer agent GUT-70 (synthesized at Nippon Shinyaku, Kyoto, Japan), a natural product derived from the stem bark of Calophyllum brasiliense, characterized as a tricyclic coumarin with the formula 5-methoxy-2,2-dimethyl-6-(2-methyl-1-oxo-2-butenyl) -10-propyl-2H,8H-benzo[1,2-b;3,4-b]dipyran-8-one (C23H26O5). This agent has pronounced anti-tumor activity, but does not inhibit colony formation by normal hematopoietic progenitors or proliferation of normal human hepatocytes. (Kimura, Int J Cancer 2005;113:158) However, their mechanisms have not been fully investigated. In this study, cytotoxicity and mechanisms of action of GUT-70 were investigated in MCL cell lines with wild-type and mutant p53 (wt-p53: JVM-2, Granta-519, mt-p53: Jeko-1, MINO). Treatment with GUT-70 resulted in marked reduction in cell growth (trypan blue corrected cell numbers) and an increase in the apoptotic fraction (Annexin V), in a time- and concentration-dependent manner. Importantly, mt-p53 MCL were more sensitive than wt-p53 cells (IC50 at 48 hrs: JVM-2, 4.5 μM; Granta 519, 6.3 μM; Jeko-1, 0.7 μM; MINO, 2.2 μM, % specific apoptosis of 5μM GUT-70 treated cell: JVM-2, 18.5%; Granta 519, 17.6%; Jeko-1, 38.1%; MINO, 30.9%; Annexin V). GUT-70 also impeded cell cycle progression, resulting in a decreased S-phase with increased G0/G1 cells independent of p53 status (S-phase was decreased by 8.2 % in JVM-2, 12.1% in Granta 519, 10.0 % in Jeko-1, 9.8 % in MINO). This was associated with a dramatic morphological change: bleb-like cytoplasmic enlargement without visible nuclear breakdown observed by phase-contrast time-lapse video microscopy. Next, the ability of GUT-70 to modulate cell cycle and apoptosis related proteins including p53 target genes was analyzed by western blotting. GUT-70 treatment significantly reduced cyclin D1, the hallmark of MCL, believed to be critical for lymphomagenesis, and increased p27 levels. Furthermore, GUT-70 inactivated and/or degraded Rb and repressed E2F1, effects similar to the action of the specific 26S proteasome inhibitors MG132 and bortezomib. GUT-70 induced mitochondrial apoptosis associated with caspase-9 and -3 activation, accompanied by transcriptional induction of the proapoptotic BH3-only protein Noxa. Notably, in highly sensitive Jeko-1 and MINO cells expressing mt-TP53, antiapoptotic Mcl-1 was not upregulated, whereas in less sensitive JVM-2 and Granta-519 cells with wt-TP53 GUT-70 caused Mcl-1 accumulation, which co-immunoprecipitated with Noxa. In addition, we observed higher levels of activated Bak in Jeko-1 and MINO cells compared to JVM-2 and Granta-519 cells. In summary, these data indicate that the novel anticancer agent GUT-70 depletes cyclin D1 and induces mitochondrial apoptotic cell death in MCL. Notably, these effects are more pronounced in MCL with mutant p53, a known negative prognostic factor for MCL. These findings suggest potential utility of GUT-70 for the treatment of MCL. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Zhen-Hui Xin ◽  
Ya-Li Meng ◽  
Wen-Jing Jiang ◽  
Ya-Peng Li ◽  
Li-Ping Ge ◽  
...  

Abstract With the improvement and advance in cancer diagnosis and treatment, the cancer is still a major cause of morbidity and mortality throughout the world. Obviously, new breakthroughs in therapies remain be urgent needed. In this work, we designed and synthesized the compound 1-4, namely resveratrol analogues with methylation of hydroxy distyrene, to further explore its new anti-cancer potential. Encouragingly, compound 1 (( E )-4,4'-(ethene-1,2-diyl)bis(3,5-dimethylphenol)) exhibited cytotoxicity superior to resveratrol in MCF 7 cells. More importantly, the compound 1 showed greater toxicity to tumor cells than that to normal cells, which proved that it could selectively kill tumor cells. The favorable results encouraged us to explore the inhibitory mechanism of compound 1 on MCF 7 cells. The research finding indicated the compound 1 inhibited tumor cell proliferation by both arresting cell cycle in S phase and apoptosis via a prooxidant manner. In addition, the results further verified compound 1 caused cell cycle arrest in S phase and apoptosis by down-regulation of the cycling A1/cycling A2 expression and the rise of Bax/Bcl-2 ratio in a p21-dependant pathway in MCF 7 cells. Therefore, these results are helpful for the effective design of anticanceranticancer reagents and the better understanding of their mechanism of action.


2020 ◽  
Author(s):  
Zhen-Hui Xin ◽  
Ya-Li Meng ◽  
Wen-Jing Jiang ◽  
Ya-Peng Li ◽  
Li-Ping Ge ◽  
...  

Abstract With the improvement and advance in cancer diagnosis and treatment, the cancer is still a major cause of morbidity and mortality throughout the world. Obviously, new breakthroughs in therapies remain be urgent needed. In this work, we designed and synthesized the compound 1-4, namely resveratrol analogues with methylation of hydroxy distyrene, to further explore its new anti-cancer potential. Encouragingly, compound 1 (( E )-4,4'-(ethene-1,2-diyl)bis(3,5-dimethylphenol)) exhibited cytotoxicity superior to resveratrol in MCF 7 cells. More importantly, the compound 1 showed greater toxicity to tumor cells than that to normal cells, which proved that it could selectively kill tumor cells. The favorable results encouraged us to explore the inhibitory mechanism of compound 1 on MCF 7 cells. The research finding indicated the compound 1 inhibited tumor cell proliferation by both arresting cell cycle in S phase and apoptosis via a prooxidant manner. In addition, the results further verified compound 1 caused cell cycle arrest in S phase and apoptosis by down-regulation of the cycling A1/cycling A2 expression and the rise of Bax/Bcl-2 ratio in a p21-dependant pathway in MCF 7 cells. Therefore, these results are helpful for the effective design of anticancer reagents and the better understanding of their mechanism of action.


2020 ◽  
Vol 26 ◽  
Author(s):  
Phuong H.L. Tran ◽  
Beom-Jin Lee ◽  
Thao T.D. Tran

: Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiates aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on continuing efforts of scientist on the way of developing an effective therapy for even patients with a low response to current cancer treatments.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2029
Author(s):  
Luis Gustavo Saboia Ponte ◽  
Isadora Carolina Betim Pavan ◽  
Mariana Camargo Silva Mancini ◽  
Luiz Guilherme Salvino da Silva ◽  
Ana Paula Morelli ◽  
...  

Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


2012 ◽  
Vol 33 (12) ◽  
pp. 1500-1505 ◽  
Author(s):  
Yu Sun ◽  
Shusheng Tang ◽  
Xi Jin ◽  
Chaoming Zhang ◽  
Wenxia Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document