scholarly journals Uncovering rumen microbiome components shaping feed efficiency in dairy cows

Author(s):  
Itzhak Mizrahi ◽  
Bryan A. White

Ruminants provide human society with high quality food from non-human-edible resources, but their emissions negatively impact the environment via greenhouse gas production. The rumen and its resident microorganisms dictate both processes. The overall goal of this project was to determine whether a causal relationship exists between the rumen microbiome and the host animal's physiology, and if so, to isolate and examine the specific determinants that enable this causality. To this end, we divided the project into three specific parts: (1) determining the feed efficiency of 200 milking cows, (2) determining whether the feed- efficiency phenotype can be transferred by transplantation and (3) isolating and examining microbial consortia that can affect the feed-efficiency phenotype by their transplantation into germ-free ruminants. We finally included 1000 dairy cow metadata in our study that revealed a global core microbiome present in the rumen whose composition and abundance predicted many of the cows’ production phenotypes, including methane emission. Certain members of the core microbiome are heritable and have strong associations to cardinal rumen metabolites and fermentation products that govern the efficiency of milk production. These heritable core microbes therefore present primary targets for rumen manipulation towards sustainable and environmentally friendly agriculture. We then went beyond examining the metagenomic content, and asked whether microbes behave differently with relation to the host efficiency state. We sampled twelve animals with two extreme efficiency phenotypes, high efficiency and low efficiency where the first represents animals that maximize energy utilization from their feed whilst the later represents animals with very low utilization of the energy from their feed. Our analysis revealed differences in two host efficiency states in terms of the microbial expression profiles both with regards to protein identities and quantities. Another aim of the proposal was the cultivation of undescribed rumen microorganisms is one of the most important tasks in rumen microbiology. Our findings from phylogenetic analysis of cultured OTUs on the lower branches of the phylogenetic tree suggest that multifactorial traits govern cultivability. Interestingly, most of the cultured OTUs belonged to the rare rumen biosphere. These cultured OTUs could not be detected in the rumen microbiome, even when we surveyed it across 38 rumen microbiome samples. These findings add another unique dimension to the complexity of the rumen microbiome and suggest that a large number of different organisms can be cultured in a single cultivation effort. In the context of the grant, the establishment of ruminant germ-free facility was possible and preliminary experiments were successful, which open up the way for direct applications of the new concepts discovered here, prior to the larger scale implementation at the agricultural level. 

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anna Detman ◽  
Michał Bucha ◽  
Laura Treu ◽  
Aleksandra Chojnacka ◽  
Łukasz Pleśniak ◽  
...  

Abstract Background During the acetogenic step of anaerobic digestion, the products of acidogenesis are oxidized to substrates for methanogenesis: hydrogen, carbon dioxide and acetate. Acetogenesis and methanogenesis are highly interconnected processes due to the syntrophic associations between acetogenic bacteria and hydrogenotrophic methanogens, allowing the whole process to become thermodynamically favorable. The aim of this study is to determine the influence of the dominant acidic products on the metabolic pathways of methane formation and to find a core microbiome and substrate-specific species in a mixed biogas-producing system. Results Four methane-producing microbial communities were fed with artificial media having one dominant component, respectively, lactate, butyrate, propionate and acetate, for 896 days in 3.5-L Up-flow Anaerobic Sludge Blanket (UASB) bioreactors. All the microbial communities showed moderately different methane production and utilization of the substrates. Analyses of stable carbon isotope composition of the fermentation gas and the substrates showed differences in average values of δ13C(CH4) and δ13C(CO2) revealing that acetate and lactate strongly favored the acetotrophic pathway, while butyrate and propionate favored the hydrogenotrophic pathway of methane formation. Genome-centric metagenomic analysis recovered 234 Metagenome Assembled Genomes (MAGs), including 31 archaeal and 203 bacterial species, mostly unknown and uncultivable. MAGs accounted for 54%–67% of the entire microbial community (depending on the bioreactor) and evidenced that the microbiome is extremely complex in terms of the number of species. The core microbiome was composed of Methanothrix soehngenii (the most abundant), Methanoculleus sp., unknown Bacteroidales and Spirochaetaceae. Relative abundance analysis of all the samples revealed microbes having substrate preferences. Substrate-specific species were mostly unknown and not predominant in the microbial communities. Conclusions In this experimental system, the dominant fermentation products subjected to methanogenesis moderately modified the final effect of bioreactor performance. At the molecular level, a different contribution of acetotrophic and hydrogenotrophic pathways for methane production, a very high level of new species recovered, and a moderate variability in microbial composition depending on substrate availability were evidenced. Propionate was not a factor ceasing methane production. All these findings are relevant because lactate, acetate, propionate and butyrate are the universal products of acidogenesis, regardless of feedstock.


1969 ◽  
Vol 3 (2) ◽  
pp. 101-106 ◽  
Author(s):  
R. Cook ◽  
R. G. Dorman

A simple and effective method for anaesthetising germ-free rabbits and rats for the collection of heart-blood samples is described. The anaesthetic agent, a mixture of 2 or 4 per cent halothane in oxygen, was passed into the germ-free isolators through a tube sealed into the wall and fitted at each end with a high-efficiency gas line filter.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 106-106
Author(s):  
Alexa C Johnson ◽  
Amy S Biddle

Abstract This study reports the differential response of the equine gut microbiome to protein and/or carbohydrate based on keeper status (easy keeper (EK), medium keeper (MK), hard keeper (HK)). Anaerobic equine fecal samples (n = 12 total, n = 3 / EK, MK, HK of four breeds) inoculated microcosms with three dietary conditions (C = Carb (cornmeal), P = Protein (soybean meal), and M = mix (50% C, 50% P)). Over 48 hours, fermentation products were measured using colorimetric assays and high-performance liquid chromatography. Microbial populations were surveyed using 16S rRNA gene sequencing analyzed by QIIME2. Linear mixed models were fit with fixed effects of Treatment and Keeper status and their interactions, with random effects of HorseID. Differences in fermentation products by keeper status included: MK had higher pH and greater gas production, EK produced higher hydrogen sulfide, and HK had greater total protein. Total SCFA was not different between keeper status (P = 0.89) but the acetate: propionate ratio was highest for HK (2.45mM) and lowest for EK (1.85mM) (P = 0.05). Isobutyrate production was highest in HK (2.34mM) compared to MK (0.85mM) and EK (0.17mM). Treatment had significant effects across all measurements; M and C treatment values were similar reflecting microbial preferences for carbohydrates before protein. P treated trials had increased fermentation outputs due to lower acidity effects. Keeper status had no effect on α-diversity (P > 0.05) however HK horses were least affected by treatments. P treated samples were more diverse than C and M (P < 0.001). Spearman correlation of Keeper x Treatment identified Oligosphaeria spp. in EK (r = 0.49) and Fusobacteria spp. in HK whole fecal samples (r = 0.37). These data suggest that while the compositions of the gut microbiomes of keeper groups were similar, they were functionally different in processing key nutrients.


2020 ◽  
Author(s):  
Sicheng Xing ◽  
Chunbo Huang ◽  
Ruiting Wu ◽  
Yiwen Yang ◽  
Jingyuan Chen ◽  
...  

Abstract Background: The microbiota in the cecum of laying hens was critical for host digestion metabolism and odor gas production. Recent studies have suggested that host miRNAs could regulate gene expression in the gut microbiota. The expression profiles of host-derived miRNAs in the cecal content of two laying hen breeds, Hy-line Gray and Lohmann Pink, which have dissimilar H2S production were characterized, and their possible effects on H2S production by regulating the expression of related genes in the microbiota were demonstrated. Results: The differential expression of microbial serine O-acetyltransferase, methionine synthase, aspartate aminotransferase, methionine-gamma-lyase and adenylylsulfate kinase between the two breeds resulted in lower H2S production in the Hy-line hens. The results also demonstrated miRNA exosomes in the cecal content of laying hens and the potential miRNA-target relationships between 9 differentially expressed miRNAs and 9 differentially expressed microbial genes related to H2S production were investigated, among which gga-miR-222a targeted two methionine synthase genes, Odosp_3416 and BF9343_2953. An in vitro fermentation experiment showed that gga-miR-222a upregulated the expression of these genes, which increased methionine concentrations but decreased H2S production and soluble sulfide concentrations, indicating the potential of host-derived gga-miR-222a to reduce H2S emission in laying hens. Conclusion: These findings identify both a physiologic role by which miRNA shapes the cecal microbiota of laying hens and a strategy to use host miRNAs to manipulate the microbiome and actively expressed key microbial genes to reduce H2S emission and breed environmentally friendly laying hens.


Author(s):  
Ayako Aoki ◽  
Reiji Aoki ◽  
Madoka Yatagai ◽  
Toshiyuki Kawasumi

ABSTRACT MicroRNAs play an important role in microbiota–host crosstalk. In this study, we compared microRNA expression in whole colons of specific pathogen-free mice and germ-free mice. Forty-eight microRNAs were differentially expressed by more than 2-fold. Gene ontology analysis of the predicted mRNA targets revealed that the majority of the most significant gene ontology terms were related to GTPases and nerves.


2020 ◽  
Vol 117 (21) ◽  
pp. 11240-11246 ◽  
Author(s):  
Shuwang Wu ◽  
Yingjie Du ◽  
Yousif Alsaid ◽  
Dong Wu ◽  
Mutian Hua ◽  
...  

Ice accumulation causes various problems in our daily life for human society. The daunting challenges in ice prevention and removal call for novel efficient antiicing strategies. Recently, photothermal materials have gained attention for creating icephobic surfaces owing to their merits of energy conservation and environmental friendliness. However, it is always challenging to get an ideal photothermal material which is cheap, easily fabricating, and highly photothermally efficient. Here, we demonstrate a low-cost, high-efficiency superhydrophobic photothermal surface, uniquely based on inexpensive commonly seen candle soot. It consists of three components: candle soot, silica shell, and polydimethylsiloxane (PDMS) brushes. The candle soot provides hierarchical nano/microstructures and photothermal ability, the silica shell strengthens the hierarchical candle soot, and the grafted low-surface-energy PDMS brushes endow the surface with superhydrophobicity. Upon illumination under 1 sun, the surface temperature can increase by 53 °C, so that no ice can form at an environmental temperature as low as −50 °C and it can also rapidly melt the accumulated frost and ice in 300 s. The superhydrophobicity enables the melted water to slide away immediately, leaving a clean and dry surface. The surface can also self-clean, which further enhances its effectiveness by removing dust and other contaminants which absorb and scatter sunlight. In addition, after oxygen plasma treatment, the surface can restore superhydrophobicity with sunlight illumination. The presented icephobic surface shows great potential and broad impacts owing to its inexpensive component materials, simplicity, ecofriendliness, and high energy efficiency.


2020 ◽  
Vol 1012 ◽  
pp. 158-163
Author(s):  
Oliveira Marilei de Fátima ◽  
Mazur Viviane Teleginski ◽  
Virtuozo Fernanda ◽  
Junior Valter Anzolin de Souza

Nowadays, humanity has become aware of the consequences that the use of fossil fuels entails, and the latest developments in the energy sector are leading to a diversification of energy resources. In this context, researching on alternative forms of producing electric energy is being conducted. At the transportation level, a possible solution for this matter may lie in hydrogen fuel cells. The electrolysis of water is one of the possible processes for hydrogen production, but the reaction to break the water molecule requires a great amount of energy and this is precisely the biggest issue involving this process. In this work, low cost electrodes of 254 stainless steel and electrolytic graphite were used for hydrogen production, allowing high efficiency and reduced oxidation during the process. The selection of these materials allows to obtain a high corrosion resistance electrolytic pair, by replacing the high cost platinum electrode usually employed in the alkaline electrolysis process. The formic acid of biomass origin was used as an electrolyte. It was observed that the developed reactor have no energy losses through heat and it was possible to obtain approximately 82% conversion efficiency in the gas production process.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 194-195
Author(s):  
Jean-Philippe Marden ◽  
Virginie Marquis ◽  
Kheira Hadjeba Medjdoub ◽  
Marine Lacombe

Abstract Aflatoxins are secondary metabolites produced by Aspergillus species known to be the most prevalent contaminants in feedstuffs. In ruminants, contaminated AFB1 feeds usually exhibit symptoms including reduced feed efficiency and milk production and decreased appetite. The objective of this study was to investigate the effects of different concentrations of AFB1 on rumen fermentation parameters by using the ANKOM gas production protocol. Rumen fluid was collected from a cannulated dry dairy cow, filtered with cheese-cloth and diluted (1:1) with a standard buffer. Triplicates of 75 mL flasks were fed 0,75g of feed (79% corn silage, 15% alfalfa and 6% concentrates) and inoculated with 0 (blank), 0,2, 0,5, 1 and 2 ppm of AFB1. Flasks were placed in a rotating incubation at 39°C for 96h and connected to ANKOM GP system. After 96h of incubation, the contents of each flask were centrifuged. Supernatants were analyzed for total VFA and AFB1 while precipitates were dried at 104°C for DM disappearance. The experimentation was repeated weekly 3 times and named wk1, 2 and 3. Statistical analysis was done by SPSS using a univariate model. Results showed no significant differences on GP max at 96h among AFB1 concentrations. Only wk 1 showed that higher AFB1 concentration (2 ppm) decreased significantly (P < 0,05) DM disappearance (- 8,2 pts) when compared to the blank. Total VFA contents (75,0 ± 1,6 mM) were not affected by AFB1. Wk 2 and 3 did not show any difference neither on DM disappearance nor on VFA (89,1 ± 1,6 mM; 110,2 ± 4,8 mM). It can be concluded that our in vitro model, GP did not reflect DM disappearance and it can be put forward that rumen fluid with low total VFA concentrations (≤ 75 mM) could be more sensible to AFB1 challenge.


Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Fuyong Li ◽  
Thomas C. A. Hitch ◽  
Yanhong Chen ◽  
Christopher J. Creevey ◽  
Le Luo Guan

Sign in / Sign up

Export Citation Format

Share Document