Dependence of the joint configuration on the dynamic immobility fulcrum

Author(s):  
A. D. Kozlov ◽  
Yu. P. Potekhina

Although joints with synovial cavities and articular surfaces are very variable, they all have one common peculiarity. In most cases, one of the articular surfaces is concave, whereas the other one is convex. During the formation of a joint, the epiphysis, which has less kinetic energy during the movements in the joint, forms a convex surface, whereas large kinetic energy forms the epiphysis with a concave surface. Basing on this concept, the analysis of the structure of the joints, allows to determine forces involved into their formation, and to identify the general patterns of the formation of the skeleton.

This study of the thallium fluoride spectrum was undertaken as part of a detailed investigation into the molecular spectra of the series of heavy diatomic fluorides HgF, TlF, PbF and BiF. Whereas the spectra of PbF (Rochester 1936) and BiF (Howell 1936), of which analyses have already been published, contain no very unusual features the TlF spectrum is particularly rich in them, so that it has seemed desirable to extend the original investigation in order to include the other halides of thallium. The absorption spectrum of the fluoride has already been examined by Boizova and Butkow (1936), their findings being summarized below: 1— A continuum at 2200 A appears when the absorption tube is at a temperature of 155° C. Its long-wave edge moves towards the red with increase of temperature, being at 2700 for the unsaturated vapour and at 3400 for the saturated vapour when the temperature is 280° C. They attributed this continuum to the dissociation of Tl 2 F 2 . Tl 2 F 2 → 2TlF + kinetic energy.


2017 ◽  
Vol 32 (1) ◽  
pp. 39-51
Author(s):  
Zayra Christine Sátyro ◽  
José Veiga

Abstract This study focuses on the quantification and evaluation of the effects of ENSO (El Niño Southern Oscillation) warm phases, using a composite of five intense El Niño episodes between 1979 – 2011 on the Energetic Lorenz Cycle for four distinct regions around the globe: 80° S – 5° N (region 1), 50° S – 5° N (region 2), 30° S – 5° N (region 3), and 30° S – 30° N (region 4), using Data from NCEP reanalysis-II. Briefly, the results showed that zonal terms of potential energy and kinetic energy were intensified, except for region 1, where zonal kinetic energy weakened. Through the analysis of the period in which higher energy production is observed, a strong communication between the available zonal potential and the zonal kinetic energy reservoirs can be identified. This communication weakened the modes linked to eddies of potential energy and kinetic energy, as well as in the other two baroclinic conversions terms. Furthermore, the results indicate that for all the regions, the system itself works to regain its stable condition.


1989 ◽  
Vol 67 (9) ◽  
pp. 896-903 ◽  
Author(s):  
Lorenzo Resca

We show that a one-dimensional analytical study allows us to test and clarify the derivation, assumptions, and symmetry properties of the intervalley effective mass equation (IVEME). In particular, we show that the IVEME is consistent with a two-band case, and is in fact exact for a model that satisfies exactly all its assumptions. On the other hand, an alternative formulation in k-space that includes intervalley kinetic energy terms is consistent with a one-band case, provided that intra-valley kinetic energy terms are also calculated consistent with one band. We also show that the standard symmetry assumptions for both real space and k-space formulations are not actually exact, but are consistent with a "total symmetric" projection, or with taking spherical averages in a three-dimensional case.


Author(s):  
Xin Zhao ◽  
Zili Li ◽  
Rolf Dollevoet

With up to 12 spring-damper groups distributed in the actual area of a rail pad, different fastening models are developed in this paper to include the nonuniform pressure distribution within a fastening system and model the constraints at the rail bottom more realistically for the purpose of high frequency dynamics between vehicle and track. Applied to a 3D transient FE model of the vehicle-track interaction, influence of the fastening modeling on the high frequency dynamic contact forces at singular rail surface defects (SRSDs) is examined. Two defect models, one is relatively large and the other is small, are employed. Such a work is of practical significance because squats, as a kind of SRSD, have become a wide spread problem. Results show that the fastening modeling plays an important role in the high frequency dynamic contact forces at SRSDs. Supports in the middle of the rail bottom, modeled as spring-damper groups located under rail web, are found to be most important. The less the rail bottom is constrained or supported, the more isolated the sleepers and substructure are from the wheel-rail interaction, and the more kinetic energy is kept in the rail after impact at a SRSD. Rolling speed is also varied to take into account its influence. Finally, based on the results of this work, influence of the service states of the fastening system on growth of relatively small SRSDs is discussed.


1971 ◽  
Vol 48 (2) ◽  
pp. 365-384 ◽  
Author(s):  
C. F. Chen ◽  
R. P. Kirchner

The stability of the flow induced by an impulsively started inner cylinder in a Couette flow apparatus is investigated by using a linear stability analysis. Two approaches are taken; one is the treatment as an initial-value problem in which the time evolution of the initially distributed small random perturbations of given wavelength is monitored by numerically integrating the unsteady perturbation equations. The other is the quasi-steady approach, in which the stability of the instantaneous velocity profile of the basic flow is analyzed. With the quasi-steady approach, two stability criteria are investigated; one is the standard zero perturbation growth rate definition of stability, and the other is the momentary stability criterion in which the evolution of the basic flow velocity field is partially taken into account. In the initial-value problem approach, the predicted critical wavelengths agree remarkably well with those found experimentally. The kinetic energy of the perturbations decreases initially, reaches a minimum, then grows exponentially. By comparing with the experimental results, it may be concluded that when the perturbation kinetic energy has grown a thousand-fold, the secondary flow pattern is clearly visible. The time of intrinsic instability (the time at which perturbations first tend to grow) is about ¼ of the time required for a thousandfold increase, when the instability disks are clearly observable. With the quasi-steady approach, the critical times for marginal stability are comparable to those found using the initial-value problem approach. The predicted critical wavelengths, however, are about 1½ to 2 times larger than those observed. Both of these points are in agreement with the findings of Mahler, Schechter & Wissler (1968) treating the stability of a fluid layer with time-dependent density gradients. The zero growth rate and the momentary stability criteria give approximately the same results.


2010 ◽  
Vol 166-167 ◽  
pp. 309-314 ◽  
Author(s):  
Iuliu Negrean ◽  
Claudiu Schonstein ◽  
Kalman Kacso ◽  
Calin Negrean ◽  
Adina Duca

In this paper the dynamics equations for a mobile robot, named PatrolBot, will be developed, using new concepts in advanced mechanics, based on important scientific researches of the main author, concerning the kinetic energy. In keeping the fact that the mathematical models of the mobile platforms are different besides the other robots types, due to nonholonomic constraints, these dynamic control functions, will be computed, according to these restrictions for robot motion.


2016 ◽  
Vol 880 ◽  
pp. 132-135 ◽  
Author(s):  
Selim Gürgen ◽  
Melih Cemal Kuşhan

High performance fabrics are preferable for armor systems due to their lightweight structure and flexibility. High performance fabrics are generally used in body armor design for personal protection. However, these fabrics are utilized to cover the living space in military vehicles such as helicopters and armored vehicles. Besides, pilot seats in combat helicopters are included in utilization area of high performance fabrics. On the other hand armor is defined as a defensive covering to protect body or something against attacking threats. Protection is provided by absorbing the kinetic energy of the attacking threats and stopping them before any damage occurs in the target. This paper offers an overview of high performance fabrics in armor systems.


1979 ◽  
Vol 101 (3) ◽  
pp. 521-525 ◽  
Author(s):  
R. E. Mayle ◽  
M. F. Blair ◽  
F. C. Kopper

Heat transfer measurements for a turbulent boundary layer on a convex and concave, constant-temperature surface are presented. The heat transferred on the convex surface was found to be less than that for a flat surface, while the heat transferred to the boundary layer on the concave surface was greater. It was also found that the heat transferred on the convex surface could be determined by using an existing two-dimensional finite difference boundary layer program modified to take into account the effect of streamline curvature on the turbulent shear stress and heat flux, but that the heat transferred on the concave surface could not be calculated. The latter result is attributed to the transition from a two-dimensional flow to one which contained streamwise, Taylor-Go¨rtler type vortices.


Author(s):  
Jian Zhang ◽  
Yongde Zuo ◽  
Xingjiang Chen ◽  
Qinghong Zhang

The flywheels on reactor coolant pump motors provide inertia to ensure a slow decrease in coolant flow in order to prevent fuel damage as a result of a loss of power to the pump motors. During operation at normal speed, a flywheel has sufficient kinetic energy to produce high-energy missiles and excessive vibration of the reactor coolant pump assembly if the flywheel failed. Overspeed of the pump rotor assembly during a transient increases both the potential for failure and the kinetic energy of the flywheel. The safety consequences could be significant because of possible damage to the reactor coolant system, the containment, or other equipment or systems important to safety. Usually, the design of connection between flywheel and pump rotor has two types, one is keyway, and the other is rotor shrink fitting. This paper has done the research on the analysis of the integrity of flywheel in design rules and guidelines, such as NUREG, RG and NB, which have given the allowable stress limits but not given the potential for failures types and the stress verification type. So the stress verification of the flywheel is different in different technicals and structures. Some papers also have different analysis methods in China. This paper considers the failures mode of flywheel, using the analytical method in THEORY OF ELASTICITY and Tresca criteria to give the method of the stress analysis of flywheel. Next, this paper pays attention on the analysis of the flywheel integrity about two connection types, and gives the other requirements of integrity. Such as stress analysis, fatigue analysis, ductile failure analysis, non-ductile failure analysis, crack propagation analysis etc.


2000 ◽  
Vol 417 ◽  
pp. 157-181 ◽  
Author(s):  
A. A. KOROBKIN ◽  
D. H. PEREGRINE

The initial stage of the water flow caused by an impact on a floating body is considered. The vertical velocity of the body is prescribed and kept constant after a short acceleration stage. The present study demonstrates that impact on a floating and non-flared body gives acoustic effects that are localized in time behind the front of the compression wave generated at the moment of impact and are of major significance for explaining the energy distribution throughout the water, but their contribution to the flow pattern near the body decays with time. We analyse the dependence on the body acceleration of both the water flow and the energy distribution – temporal and spatial. Calculations are performed for a half-submerged sphere within the framework of the acoustic approximation. It is shown that the pressure impulse and the total impulse of the flow are independent of the history of the body motion and are readily found from pressure-impulse theory. On the other hand, the work done to oppose the pressure force, the internal energy of the water and its kinetic energy are essentially dependent on details of the body motion during the acceleration stage. The main parameter is the ratio of the time scale for the acoustic effects and the duration of the acceleration stage. When this parameter is small the work done to accelerate the body is minimal and is spent mostly on the kinetic energy of the flow. When the sphere is impulsively started to a constant velocity (the parameter is infinitely large), the work takes its maximum value: Longhorn (1952) discovered that half of this work goes to the kinetic energy of the flow near the body and the other half is taken away with the compression wave. However, the work required to accelerate the body decreases rapidly as the duration of the acceleration stage increases. The optimal acceleration of the sphere, which minimizes the acoustic energy, is determined for a given duration of the acceleration stage. Roughly speaking, the optimal acceleration is a combination of both sudden changes of the sphere velocity and uniform acceleration.If only the initial velocity of the body is prescribed and it then moves freely under the influence of the pressure, the fraction of the energy lost in acoustic waves depends only on the ratio of the body's mass to the mass of water displaced by the hemisphere.


Sign in / Sign up

Export Citation Format

Share Document